Estimation of genetic admixture proportions via haplotypes.

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Computational and structural biotechnology journal Pub Date : 2024-12-06 eCollection Date: 2024-12-01 DOI:10.1016/j.csbj.2024.11.043
Seyoon Ko, Eric M Sobel, Hua Zhou, Kenneth Lange
{"title":"Estimation of genetic admixture proportions via haplotypes.","authors":"Seyoon Ko, Eric M Sobel, Hua Zhou, Kenneth Lange","doi":"10.1016/j.csbj.2024.11.043","DOIUrl":null,"url":null,"abstract":"<p><p>Estimation of ancestral admixture is essential for creating personal genealogies, studying human history, and conducting genome-wide association studies (GWAS). The following three primary methods exist for estimating admixture coefficients. The frequentist approach directly maximizes the binomial loglikelihood. The Bayesian approach adds a reasonable prior and samples the posterior distribution. Finally, the nonparametric approach decomposes the genotype matrix algebraically. Each approach scales successfully to datasets with a million individuals and a million single nucleotide polymorphisms (SNPs). Despite their variety, all current approaches assume independence between SNPs. To achieve independence requires performing LD (linkage disequilibrium) filtering before analysis. Unfortunately, this tactic loses valuable information and usually retains many SNPs still in LD. The present paper explores the option of explicitly incorporating haplotypes in ancestry estimation. Our program, HaploADMIXTURE, operates on adjacent SNP pairs and jointly estimates their haplotype frequencies along with admixture coefficients. This more complex strategy takes advantage of the rich information available in haplotypes and ultimately yields better admixture estimates and better clustering of real populations in curated datasets.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"23 ","pages":"4384-4395"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683265/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2024.11.043","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Estimation of ancestral admixture is essential for creating personal genealogies, studying human history, and conducting genome-wide association studies (GWAS). The following three primary methods exist for estimating admixture coefficients. The frequentist approach directly maximizes the binomial loglikelihood. The Bayesian approach adds a reasonable prior and samples the posterior distribution. Finally, the nonparametric approach decomposes the genotype matrix algebraically. Each approach scales successfully to datasets with a million individuals and a million single nucleotide polymorphisms (SNPs). Despite their variety, all current approaches assume independence between SNPs. To achieve independence requires performing LD (linkage disequilibrium) filtering before analysis. Unfortunately, this tactic loses valuable information and usually retains many SNPs still in LD. The present paper explores the option of explicitly incorporating haplotypes in ancestry estimation. Our program, HaploADMIXTURE, operates on adjacent SNP pairs and jointly estimates their haplotype frequencies along with admixture coefficients. This more complex strategy takes advantage of the rich information available in haplotypes and ultimately yields better admixture estimates and better clustering of real populations in curated datasets.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信