Cheng Tan, Yijie Zhang, Zhangyang Gao, Hanqun Cao, Siyuan Li, Siqi Ma, Mathieu Blanchette, Stan Z Li
{"title":"R3Design: deep tertiary structure-based RNA sequence design and beyond.","authors":"Cheng Tan, Yijie Zhang, Zhangyang Gao, Hanqun Cao, Siyuan Li, Siqi Ma, Mathieu Blanchette, Stan Z Li","doi":"10.1093/bib/bbae682","DOIUrl":null,"url":null,"abstract":"<p><p>The rational design of Ribonucleic acid (RNA) molecules is crucial for advancing therapeutic applications, synthetic biology, and understanding the fundamental principles of life. Traditional RNA design methods have predominantly focused on secondary structure-based sequence design, often neglecting the intricate and essential tertiary interactions. We introduce R3Design, a tertiary structure-based RNA sequence design method that shifts the paradigm to prioritize tertiary structure in the RNA sequence design. R3Design significantly enhances sequence design on native RNA backbones, achieving high sequence recovery and Macro-F1 score, and outperforming traditional secondary structure-based approaches by substantial margins. We demonstrate that R3Design can design RNA sequences that fold into the desired tertiary structures by validating these predictions using advanced structure prediction models. This method, which is available through standalone software, provides a comprehensive toolkit for designing, folding, and evaluating RNA at the tertiary level. Our findings demonstrate R3Design's superior capability in designing RNA sequences, which achieves around $44\\%$ in terms of both recovery score and Macro-F1 score in multiple datasets. This not only denotes the accuracy and fairness of the model but also underscores its potential to drive forward the development of innovative RNA-based therapeutics and to deepen our understanding of RNA biology.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685104/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae682","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The rational design of Ribonucleic acid (RNA) molecules is crucial for advancing therapeutic applications, synthetic biology, and understanding the fundamental principles of life. Traditional RNA design methods have predominantly focused on secondary structure-based sequence design, often neglecting the intricate and essential tertiary interactions. We introduce R3Design, a tertiary structure-based RNA sequence design method that shifts the paradigm to prioritize tertiary structure in the RNA sequence design. R3Design significantly enhances sequence design on native RNA backbones, achieving high sequence recovery and Macro-F1 score, and outperforming traditional secondary structure-based approaches by substantial margins. We demonstrate that R3Design can design RNA sequences that fold into the desired tertiary structures by validating these predictions using advanced structure prediction models. This method, which is available through standalone software, provides a comprehensive toolkit for designing, folding, and evaluating RNA at the tertiary level. Our findings demonstrate R3Design's superior capability in designing RNA sequences, which achieves around $44\%$ in terms of both recovery score and Macro-F1 score in multiple datasets. This not only denotes the accuracy and fairness of the model but also underscores its potential to drive forward the development of innovative RNA-based therapeutics and to deepen our understanding of RNA biology.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.