microT-CNN: an avant-garde deep convolutional neural network unravels functional miRNA targets beyond canonical sites.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Elissavet Zacharopoulou, Maria D Paraskevopoulou, Spyros Tastsoglou, Athanasios Alexiou, Anna Karavangeli, Vasilis Pierros, Stefanos Digenis, Galatea Mavromati, Artemis G Hatzigeorgiou, Dimitra Karagkouni
{"title":"microT-CNN: an avant-garde deep convolutional neural network unravels functional miRNA targets beyond canonical sites.","authors":"Elissavet Zacharopoulou, Maria D Paraskevopoulou, Spyros Tastsoglou, Athanasios Alexiou, Anna Karavangeli, Vasilis Pierros, Stefanos Digenis, Galatea Mavromati, Artemis G Hatzigeorgiou, Dimitra Karagkouni","doi":"10.1093/bib/bbae678","DOIUrl":null,"url":null,"abstract":"<p><p>microRNAs (miRNAs) are central post-transcriptional gene expression regulators in healthy and diseased states. Despite decades of effort, deciphering miRNA targets remains challenging, leading to an incomplete miRNA interactome and partially elucidated miRNA functions. Here, we introduce microT-CNN, an avant-garde deep convolutional neural network model that moves the needle by integrating hundreds of tissue-matched (in-)direct experiments from 26 distinct cell types, corresponding to a unique training and evaluation set of >60 000 miRNA binding events and ~30 000 unique miRNA-gene target pairs. The multilayer sequence-based design enables the prediction of both host and virus-encoded miRNA interactions, providing for the first time up to 67% of direct genuine Epstein-Barr virus- and Kaposi's sarcoma-associated herpesvirus-derived miRNA-target pairs corresponding to one out of four binding events of virus-encoded miRNAs. microT-CNN fills the existing gap of the miRNA-target prediction by providing functional targets beyond the canonical sites, including 3' compensatory miRNA pairings, prompting 1.4-fold more validated miRNA binding events compared to other implementations and shedding light on previously unexplored facets of the miRNA interactome.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685103/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae678","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

microRNAs (miRNAs) are central post-transcriptional gene expression regulators in healthy and diseased states. Despite decades of effort, deciphering miRNA targets remains challenging, leading to an incomplete miRNA interactome and partially elucidated miRNA functions. Here, we introduce microT-CNN, an avant-garde deep convolutional neural network model that moves the needle by integrating hundreds of tissue-matched (in-)direct experiments from 26 distinct cell types, corresponding to a unique training and evaluation set of >60 000 miRNA binding events and ~30 000 unique miRNA-gene target pairs. The multilayer sequence-based design enables the prediction of both host and virus-encoded miRNA interactions, providing for the first time up to 67% of direct genuine Epstein-Barr virus- and Kaposi's sarcoma-associated herpesvirus-derived miRNA-target pairs corresponding to one out of four binding events of virus-encoded miRNAs. microT-CNN fills the existing gap of the miRNA-target prediction by providing functional targets beyond the canonical sites, including 3' compensatory miRNA pairings, prompting 1.4-fold more validated miRNA binding events compared to other implementations and shedding light on previously unexplored facets of the miRNA interactome.

micro - cnn:一个前卫的深度卷积神经网络揭示了规范位点之外的功能miRNA目标。
microRNAs (miRNAs)是健康和疾病状态下转录后基因表达的主要调控因子。尽管经过数十年的努力,破译miRNA靶点仍然具有挑战性,导致miRNA相互作用组不完整,miRNA功能部分被阐明。在这里,我们引入了micro - cnn,这是一种前卫的深度卷积神经网络模型,通过整合来自26种不同细胞类型的数百个组织匹配(in-)直接实验来移动针头,对应于一个独特的训练和评估集,其中包含约60000个miRNA结合事件和约30000个独特的miRNA基因靶对。基于多层序列的设计能够预测宿主和病毒编码的miRNA相互作用,首次提供高达67%的直接真正的爱泼斯坦-巴尔病毒和卡波西氏肉瘤相关疱疹病毒衍生的miRNA靶对,对应于病毒编码miRNA的四分之一的结合事件。microT-CNN通过提供规范位点之外的功能靶标(包括3'代偿性miRNA配对)填补了miRNA靶标预测的现有空白,与其他实现相比,促进了1.4倍的验证miRNA结合事件,并揭示了miRNA相互作用组以前未被探索的方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信