{"title":"Multiple machine learning models for predicting annual energy consumption and demand of office buildings in subtropical monsoon climate","authors":"Jawad Ashraf, Rafi Azam, Asfia Akter Rifa, Md Jewel Rana","doi":"10.1007/s42107-024-01190-x","DOIUrl":null,"url":null,"abstract":"<div><p>Reducing a building’s energy use has many real-world applications. An early-stage design could have a quantitative foundation for energy-saving designs if energy consumption could be predicted quickly and accurately. The main issue that designers are currently dealing with is the incompatibility of building modelling and energy simulation software. In order to realize the flexibility of building energy systems, accurate and timely thermal load prediction for buildings is essential. Here, three machine learning (ML) models – Artificial Neural Network (ANN), Random Forest (RF) and Extreme Gradient Boosting (XGBoost) were used, for forecasting an office building’s load demand and energy usage. A case study building was selected and analysed via Autodesk Revit and Green Building Studio. For the modelling of ANN, 438 simulated data samples were created based on different design parameters considering different window, wall, roof materials and window to wall ratio, and meteorological conditions considering dew point, dry bulb, wet bulb temperature and relative humidity of seven major cities in Bangladesh. The findings show that the ANN model performs best the best in predicting annual electricity use with an R<sup>2</sup> value of 0.991 and annual load demand with an R<sup>2</sup> value of 0.995. The RMSE values ranged between 3.83 and 5.10 showing high accuracy of prediction between the three ML models. Afterwards SHAP analysis was used to analyse the input features effect on the energy consumption. Findings show that relative humidity, dry bulb temperature and pressure significantly affects the energy consumption.</p></div>","PeriodicalId":8513,"journal":{"name":"Asian Journal of Civil Engineering","volume":"26 1","pages":"293 - 309"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42107-024-01190-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Reducing a building’s energy use has many real-world applications. An early-stage design could have a quantitative foundation for energy-saving designs if energy consumption could be predicted quickly and accurately. The main issue that designers are currently dealing with is the incompatibility of building modelling and energy simulation software. In order to realize the flexibility of building energy systems, accurate and timely thermal load prediction for buildings is essential. Here, three machine learning (ML) models – Artificial Neural Network (ANN), Random Forest (RF) and Extreme Gradient Boosting (XGBoost) were used, for forecasting an office building’s load demand and energy usage. A case study building was selected and analysed via Autodesk Revit and Green Building Studio. For the modelling of ANN, 438 simulated data samples were created based on different design parameters considering different window, wall, roof materials and window to wall ratio, and meteorological conditions considering dew point, dry bulb, wet bulb temperature and relative humidity of seven major cities in Bangladesh. The findings show that the ANN model performs best the best in predicting annual electricity use with an R2 value of 0.991 and annual load demand with an R2 value of 0.995. The RMSE values ranged between 3.83 and 5.10 showing high accuracy of prediction between the three ML models. Afterwards SHAP analysis was used to analyse the input features effect on the energy consumption. Findings show that relative humidity, dry bulb temperature and pressure significantly affects the energy consumption.
期刊介绍:
The Asian Journal of Civil Engineering (Building and Housing) welcomes articles and research contributions on topics such as:- Structural analysis and design - Earthquake and structural engineering - New building materials and concrete technology - Sustainable building and energy conservation - Housing and planning - Construction management - Optimal design of structuresPlease note that the journal will not accept papers in the area of hydraulic or geotechnical engineering, traffic/transportation or road making engineering, and on materials relevant to non-structural buildings, e.g. materials for road making and asphalt. Although the journal will publish authoritative papers on theoretical and experimental research works and advanced applications, it may also feature, when appropriate: a) tutorial survey type papers reviewing some fields of civil engineering; b) short communications and research notes; c) book reviews and conference announcements.