Prediction of lithium-ion battery SOC based on IGA-GRU and the fusion of multi-head attention mechanism

Q2 Energy
Pei Tang, Minnan Jiang, Weikai Xu, Zhengyu Ding, Mao Lv
{"title":"Prediction of lithium-ion battery SOC based on IGA-GRU and the fusion of multi-head attention mechanism","authors":"Pei Tang,&nbsp;Minnan Jiang,&nbsp;Weikai Xu,&nbsp;Zhengyu Ding,&nbsp;Mao Lv","doi":"10.1186/s42162-024-00453-w","DOIUrl":null,"url":null,"abstract":"<div><p>It is necessary to establish a sufficiently advanced Battery Management System (BMS) for safe driving of electric vehicles. Lithium-ion batteries have been widely used in electric vehicles due to their advantages of high specific energy and low-temperature resistance, so this paper takes lithium-ion batteries as the research object. BMS can monitor various status information of lithium-ion batteries in real-time, and the State of Charge (SOC) of lithium-ion batteries is a key parameter among them. Accurate SOC estimation is crucial for ensuring the safety and reliability of energy storage applications and new energy vehicles. However, the value of SOC cannot be directly measured. In order to more accurately estimate the SOC, this paper proposes a prediction method that combines an immune genetic algorithm, gated recurrent unit, and multi-head attention mechanism (MHA), using battery experimental data from the University of Maryland as the dataset. Compared with the traditional parameter optimization approach, this paper uses the immune genetic algorithm to find the optimal hyperparameters of the model, which on the one hand has a wider choice of parameters, and on the other hand has been improved for the genetic algorithm is easy to fall into the local optimal solution, so as to improve the SOC estimation accuracy of the GRU model. The model also incorporates a multi-attention mechanism to capture different levels of information, which enhances the expressive power of the model. The data preprocessing part adopts the sliding window technique, through which the original time series data is converted into several different training samples when training the machine learning model, as a way to increase the diversity of the dataset and improve the robustness of the model. Finally, the prediction performance of the fusion model proposed in this paper is verified by Pycharm simulation, and the average absolute error, root mean square error and maximum prediction error of the model are 1.62%, 1.55% and 0.5%, respectively, which proves that the model can accurately predict the SOC of lithium-ion battery. It is shown that the model can significantly improve the accuracy and robustness of SOC estimation, enhance the intelligence, real-time and interpretability of the battery management system, and bring a more efficient, safe and long-lasting battery management solution to the fields of electric vehicles and energy storage systems.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00453-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00453-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

It is necessary to establish a sufficiently advanced Battery Management System (BMS) for safe driving of electric vehicles. Lithium-ion batteries have been widely used in electric vehicles due to their advantages of high specific energy and low-temperature resistance, so this paper takes lithium-ion batteries as the research object. BMS can monitor various status information of lithium-ion batteries in real-time, and the State of Charge (SOC) of lithium-ion batteries is a key parameter among them. Accurate SOC estimation is crucial for ensuring the safety and reliability of energy storage applications and new energy vehicles. However, the value of SOC cannot be directly measured. In order to more accurately estimate the SOC, this paper proposes a prediction method that combines an immune genetic algorithm, gated recurrent unit, and multi-head attention mechanism (MHA), using battery experimental data from the University of Maryland as the dataset. Compared with the traditional parameter optimization approach, this paper uses the immune genetic algorithm to find the optimal hyperparameters of the model, which on the one hand has a wider choice of parameters, and on the other hand has been improved for the genetic algorithm is easy to fall into the local optimal solution, so as to improve the SOC estimation accuracy of the GRU model. The model also incorporates a multi-attention mechanism to capture different levels of information, which enhances the expressive power of the model. The data preprocessing part adopts the sliding window technique, through which the original time series data is converted into several different training samples when training the machine learning model, as a way to increase the diversity of the dataset and improve the robustness of the model. Finally, the prediction performance of the fusion model proposed in this paper is verified by Pycharm simulation, and the average absolute error, root mean square error and maximum prediction error of the model are 1.62%, 1.55% and 0.5%, respectively, which proves that the model can accurately predict the SOC of lithium-ion battery. It is shown that the model can significantly improve the accuracy and robustness of SOC estimation, enhance the intelligence, real-time and interpretability of the battery management system, and bring a more efficient, safe and long-lasting battery management solution to the fields of electric vehicles and energy storage systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信