{"title":"Optimal Transport Based Graph Kernels for Drug Property Prediction","authors":"Mohammed Aburidi;Roummel Marcia","doi":"10.1109/OJEMB.2024.3480708","DOIUrl":null,"url":null,"abstract":"<italic>Objective:</i>\n The development of pharmaceutical agents relies heavily on optimizing their pharmacodynamics, pharmacokinetics, and toxicological properties, collectively known as ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity). Accurate assessment of these properties during the early stages of drug development is challenging due to resource-intensive experimental evaluation and limited comprehensive data availability. To overcome these obstacles, there has been a growing reliance on computational and predictive tools, leveraging recent advancements in machine learning and graph-based methodologies. This study presents an innovative approach that harnesses the power of optimal transport (OT) theory to construct three graph kernels for predicting drug ADMET properties. This approach involves the use of graph matching to create a similarity matrix, which is subsequently integrated into a predictive model. \n<italic>Results:</i>\n Through extensive evaluations on 19 distinct ADMET datasets, the potential of this methodology becomes evident. The OT-based graph kernels exhibits exceptional performance, outperforming state-of-the-art graph deep learning models in 9 out of 19 datasets, even surpassing the most impactful Graph Neural Network (GNN) that excels in 4 datasets. Furthermore, they are very competitive in 2 additional datasets. \n<italic>Conclusion:</i>\n Our proposed novel class of OT-based graph kernels not only demonstrates a high degree of effectiveness and competitiveness but also, in contrast to graph neural networks, offers interpretability, adaptability and generalizability across multiple datasets.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"152-157"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10716457","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10716457/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective:
The development of pharmaceutical agents relies heavily on optimizing their pharmacodynamics, pharmacokinetics, and toxicological properties, collectively known as ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity). Accurate assessment of these properties during the early stages of drug development is challenging due to resource-intensive experimental evaluation and limited comprehensive data availability. To overcome these obstacles, there has been a growing reliance on computational and predictive tools, leveraging recent advancements in machine learning and graph-based methodologies. This study presents an innovative approach that harnesses the power of optimal transport (OT) theory to construct three graph kernels for predicting drug ADMET properties. This approach involves the use of graph matching to create a similarity matrix, which is subsequently integrated into a predictive model.
Results:
Through extensive evaluations on 19 distinct ADMET datasets, the potential of this methodology becomes evident. The OT-based graph kernels exhibits exceptional performance, outperforming state-of-the-art graph deep learning models in 9 out of 19 datasets, even surpassing the most impactful Graph Neural Network (GNN) that excels in 4 datasets. Furthermore, they are very competitive in 2 additional datasets.
Conclusion:
Our proposed novel class of OT-based graph kernels not only demonstrates a high degree of effectiveness and competitiveness but also, in contrast to graph neural networks, offers interpretability, adaptability and generalizability across multiple datasets.
期刊介绍:
The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.