High-Precision UAV Positioning Method Based on MLP Integrating UWB and IMU

IF 6.6 1区 计算机科学 Q1 Multidisciplinary
Binbin Bao;Chuanwen Luo;Yi Hong;Zhibo Chen;Xin Fan
{"title":"High-Precision UAV Positioning Method Based on MLP Integrating UWB and IMU","authors":"Binbin Bao;Chuanwen Luo;Yi Hong;Zhibo Chen;Xin Fan","doi":"10.26599/TST.2024.9010106","DOIUrl":null,"url":null,"abstract":"Unmanned Aerial Vehicles (UAVs) are promising for their agile flight capabilities, allowing them to carry out tasks in various complex scenarios. The efficiency and accuracy of UAV operations significantly depend on high-precision positioning technology. However, the existing positioning techniques often struggle to achieve accurate position estimates in conditions of Non-line-Of-Sight (NLOS). To address this challenge, we propose a novel high-precision UAV positioning method based on Multilayer Perceptron (MLP) integrating Ultra-WideBand (UWB) and Inertial Measurement Unit (IMU) technologies, which can acquire centimeter-level high-precision location estimation. In the method, we simultaneously extract key features from channel impulse responses and state space of UAV for training an MLP model, which can not only reduce error of UWB signals from dynamically flying UAV to anchor in NLOS environments, but also adapt to the diverse environment settings. Specifically, we respectively apply the anchor node assisted position calibration method and cooperative positioning techniques to the dynamic flying UAVs for solving the issues of UWB signal being blocked and lost. We conduct extensive real-world experiments to demonstrate the effectiveness of our approach. The results show that the median positioning errors of UAV in hovering and flight are 6.3 cm and within 20 cm, respectively.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 3","pages":"1315-1328"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817766","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10817766/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Unmanned Aerial Vehicles (UAVs) are promising for their agile flight capabilities, allowing them to carry out tasks in various complex scenarios. The efficiency and accuracy of UAV operations significantly depend on high-precision positioning technology. However, the existing positioning techniques often struggle to achieve accurate position estimates in conditions of Non-line-Of-Sight (NLOS). To address this challenge, we propose a novel high-precision UAV positioning method based on Multilayer Perceptron (MLP) integrating Ultra-WideBand (UWB) and Inertial Measurement Unit (IMU) technologies, which can acquire centimeter-level high-precision location estimation. In the method, we simultaneously extract key features from channel impulse responses and state space of UAV for training an MLP model, which can not only reduce error of UWB signals from dynamically flying UAV to anchor in NLOS environments, but also adapt to the diverse environment settings. Specifically, we respectively apply the anchor node assisted position calibration method and cooperative positioning techniques to the dynamic flying UAVs for solving the issues of UWB signal being blocked and lost. We conduct extensive real-world experiments to demonstrate the effectiveness of our approach. The results show that the median positioning errors of UAV in hovering and flight are 6.3 cm and within 20 cm, respectively.
基于集成超宽带和IMU的MLP高精度无人机定位方法
无人驾驶飞行器(uav)因其灵活的飞行能力而被看好,使它们能够在各种复杂场景中执行任务。无人机作战的效率和精度在很大程度上取决于高精度定位技术。然而,现有的定位技术往往难以在非视距(NLOS)条件下实现准确的位置估计。为了解决这一挑战,我们提出了一种基于多层感知器(MLP)的无人机高精度定位方法,该方法集成了超宽带(UWB)和惯性测量单元(IMU)技术,可以获得厘米级高精度定位估计。该方法同时从无人机的信道脉冲响应和状态空间中提取关键特征进行MLP模型的训练,不仅可以减少无人机动态飞行的超宽带信号在非目标值环境下的误差,而且可以适应不同的环境设置。具体而言,我们分别将锚节点辅助定位方法和协同定位技术应用于动态飞行无人机,解决了UWB信号被阻挡和丢失的问题。我们进行了大量的实际实验来证明我们方法的有效性。结果表明,无人机悬停和飞行时的定位误差中值分别为6.3 cm和20 cm以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信