Maximizing Efficiency of Hybrid Compensated Inductive Power Transfer (IPT) Systems Under Load and Coupling Variations

Weihao Dong;Udaya Kumara Madawala
{"title":"Maximizing Efficiency of Hybrid Compensated Inductive Power Transfer (IPT) Systems Under Load and Coupling Variations","authors":"Weihao Dong;Udaya Kumara Madawala","doi":"10.1109/JESTIE.2024.3502194","DOIUrl":null,"url":null,"abstract":"Hybrid compensated inductive power transfer (IPT) systems offer high tolerance to pad misalignments, but achieving maximum efficiency with conventional control strategies still remains challenging, especially under significant variations in mutual inductance (\n<inline-formula><tex-math>$M$</tex-math></inline-formula>\n) and output power (\n<inline-formula><tex-math>${{P}_{\\text{out}}}$</tex-math></inline-formula>\n). This article, therefore, proposes an optimal control strategy, based on all four variables, to maximize the efficiency of hybrid IPT systems regardless of \n<inline-formula><tex-math>$M$</tex-math></inline-formula>\n and \n<inline-formula><tex-math>${{P}_{\\text{out}}}$</tex-math></inline-formula>\n variations. Maximum efficiency is realized by meeting optimal conditions, and it involves maximizing the ac–ac efficiency through impedance matching and minimizing converter switching losses through zero-voltage switching. As hybrid IPT systems are complex in nature, these optimal conditions cannot be determined using conventional analytical methods. Hence, this article presents a novel two-step strategy that first numerically derives the optimal conditions and then determines the optimal variables using a numerical algorithm. The proposed numerical strategy is highly versatile, as it avoids cumbersome analytical derivations, overcomes the challenges of high nonlinearity and, more importantly, is applicable to IPT systems with any compensation topologies. The proposed strategy is experimentally validated using a 3-kW hybrid compensated prototype IPT system, benchmarking against traditional control strategies, and results are presented to demonstrate how higher efficiency can be achieved compared to traditional strategies under variations in \n<inline-formula><tex-math>$M$</tex-math></inline-formula>\n, \n<inline-formula><tex-math>${{P}_{\\text{out}}}$</tex-math></inline-formula>\n, and output–input dc voltage ratios.","PeriodicalId":100620,"journal":{"name":"IEEE Journal of Emerging and Selected Topics in Industrial Electronics","volume":"6 1","pages":"19-29"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Emerging and Selected Topics in Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10757380/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid compensated inductive power transfer (IPT) systems offer high tolerance to pad misalignments, but achieving maximum efficiency with conventional control strategies still remains challenging, especially under significant variations in mutual inductance ( $M$ ) and output power ( ${{P}_{\text{out}}}$ ). This article, therefore, proposes an optimal control strategy, based on all four variables, to maximize the efficiency of hybrid IPT systems regardless of $M$ and ${{P}_{\text{out}}}$ variations. Maximum efficiency is realized by meeting optimal conditions, and it involves maximizing the ac–ac efficiency through impedance matching and minimizing converter switching losses through zero-voltage switching. As hybrid IPT systems are complex in nature, these optimal conditions cannot be determined using conventional analytical methods. Hence, this article presents a novel two-step strategy that first numerically derives the optimal conditions and then determines the optimal variables using a numerical algorithm. The proposed numerical strategy is highly versatile, as it avoids cumbersome analytical derivations, overcomes the challenges of high nonlinearity and, more importantly, is applicable to IPT systems with any compensation topologies. The proposed strategy is experimentally validated using a 3-kW hybrid compensated prototype IPT system, benchmarking against traditional control strategies, and results are presented to demonstrate how higher efficiency can be achieved compared to traditional strategies under variations in $M$ , ${{P}_{\text{out}}}$ , and output–input dc voltage ratios.
负载和耦合变化下混合补偿电感功率传输系统的效率最大化
混合补偿电感功率传输(IPT)系统对焊盘错位具有很高的容错性,但通过传统控制策略实现最大效率仍然具有挑战性,特别是在互感($M$)和输出功率(${{P}_{\text{out}}}$)发生显著变化的情况下。因此,本文提出了一种基于这四个变量的最优控制策略,以最大化混合IPT系统的效率,而不考虑$M$和${{P}_{\text{out}}}$的变化。最大效率是通过满足最优条件来实现的,它包括通过阻抗匹配来最大化交流效率和通过零电压开关来最小化变换器的开关损耗。由于混合IPT系统本质上是复杂的,这些最佳条件不能用传统的分析方法确定。因此,本文提出了一种新的两步策略,首先用数值方法推导出最优条件,然后用数值算法确定最优变量。所提出的数值策略具有很高的通用性,因为它避免了繁琐的解析推导,克服了高非线性的挑战,更重要的是,它适用于任何补偿拓扑的IPT系统。采用3kw混合补偿原型IPT系统对所提出的策略进行了实验验证,并对传统控制策略进行了基准测试,结果表明,在$M$、${{P}_{\text{out}} $和输出输入直流电压比的变化下,与传统策略相比,该策略可以实现更高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信