Amritanshu Ruhela;Ankit Kumar Singh;K. A. Chinmaya
{"title":"A Novel Nonisolated Three-Port DC–DC Converter for Solar PV Integrated E-Boat Applications","authors":"Amritanshu Ruhela;Ankit Kumar Singh;K. A. Chinmaya","doi":"10.1109/JESTIE.2024.3503355","DOIUrl":null,"url":null,"abstract":"This article proposes a novel Boost-SEPIC-based three-port converter (TPC). The converter is developed for a standalone dc microgrid with roof-top solar PV panels in an electric boat (E-boat). The proposed converter is compact and requires a minimum number of components compared to the existing TPCs. It eliminates the need for three different dc–dc converters to charge, discharge the battery, and supply power to the load. A simple control is designed to effectively manage the energy extracted from PV by storing it in a battery and delivering continuous power to the load. The proposed TPC has other advantages, such as complete control over load voltage and low current ripples during the transient period. It can swiftly change among different modes of operation by detecting the load variations, Battery SOC, and PV availability, thereby ensuring continuous power flow towards the load. A front-end boost converter is used for maximum power point tracking. A single control is designed for the entire system to operate in a closed loop. The topology is designed and analyzed using \n<sc>Matlab</small>\n-SIMULINK environment and validated on a laboratory prototype developed. Continuous power flow to the load in different modes of operation has been presented.","PeriodicalId":100620,"journal":{"name":"IEEE Journal of Emerging and Selected Topics in Industrial Electronics","volume":"6 1","pages":"94-105"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Emerging and Selected Topics in Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10758672/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article proposes a novel Boost-SEPIC-based three-port converter (TPC). The converter is developed for a standalone dc microgrid with roof-top solar PV panels in an electric boat (E-boat). The proposed converter is compact and requires a minimum number of components compared to the existing TPCs. It eliminates the need for three different dc–dc converters to charge, discharge the battery, and supply power to the load. A simple control is designed to effectively manage the energy extracted from PV by storing it in a battery and delivering continuous power to the load. The proposed TPC has other advantages, such as complete control over load voltage and low current ripples during the transient period. It can swiftly change among different modes of operation by detecting the load variations, Battery SOC, and PV availability, thereby ensuring continuous power flow towards the load. A front-end boost converter is used for maximum power point tracking. A single control is designed for the entire system to operate in a closed loop. The topology is designed and analyzed using
Matlab
-SIMULINK environment and validated on a laboratory prototype developed. Continuous power flow to the load in different modes of operation has been presented.