Power Maximization Using Finite-Control-Set Model Predictive Control Strategy for Wind Turbine Systems

Ameerkhan Abdul Basheer;Jae Hoon Jeong;Seong Ryong Lee;Young Hoon Joo
{"title":"Power Maximization Using Finite-Control-Set Model Predictive Control Strategy for Wind Turbine Systems","authors":"Ameerkhan Abdul Basheer;Jae Hoon Jeong;Seong Ryong Lee;Young Hoon Joo","doi":"10.1109/JESTIE.2024.3502658","DOIUrl":null,"url":null,"abstract":"This study aims to present a cascade-free finite-control-set model predictive control (MPC) strategy for machine-side converter as well as grid-side converter of a large-scale wind turbine system (WTS). The proposed cascade-free MPC is applied to a direct drive (DD) permanent magnet synchronous generator (PMSG) to increase its energy output. To do this, a hybrid maximum power point tracking (MPPT) method, which is the combination of both the optimum torque MPPT method as well as the tip speed ratio MPPT method, is implemented in the proposed MPC to capture maximum power from the available wind. This proposed MPC controls electromagnetic variables and electrical variables in the same control structure, thus increasing the dynamic responses of the system. Similarly, the active and reactive power control presented in this study is done using the MPC by decoupling the grid currents during the current control. Finally, the control strategy proposed in this study demonstrates its applicability through a numerical example of a DD PMSG-based WTS with power rating, and demonstrates its superiority compared to existing control methods.","PeriodicalId":100620,"journal":{"name":"IEEE Journal of Emerging and Selected Topics in Industrial Electronics","volume":"6 1","pages":"238-247"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Emerging and Selected Topics in Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10758754/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to present a cascade-free finite-control-set model predictive control (MPC) strategy for machine-side converter as well as grid-side converter of a large-scale wind turbine system (WTS). The proposed cascade-free MPC is applied to a direct drive (DD) permanent magnet synchronous generator (PMSG) to increase its energy output. To do this, a hybrid maximum power point tracking (MPPT) method, which is the combination of both the optimum torque MPPT method as well as the tip speed ratio MPPT method, is implemented in the proposed MPC to capture maximum power from the available wind. This proposed MPC controls electromagnetic variables and electrical variables in the same control structure, thus increasing the dynamic responses of the system. Similarly, the active and reactive power control presented in this study is done using the MPC by decoupling the grid currents during the current control. Finally, the control strategy proposed in this study demonstrates its applicability through a numerical example of a DD PMSG-based WTS with power rating, and demonstrates its superiority compared to existing control methods.
基于有限控制集模型的风力发电系统功率最大化预测控制策略
针对大型风力发电系统(WTS)的机侧变流器和网侧变流器,提出了一种无串级有限控制集模型预测控制(MPC)策略。将所提出的无级联永磁同步电机应用于直接驱动永磁同步发电机(PMSG)以提高其能量输出。为此,提出了一种混合最大功率点跟踪(MPPT)方法,该方法结合了最优转矩最大功率点跟踪方法和叶尖速比最大功率点跟踪方法,在该MPC中实现了从可用风中捕获最大功率。提出的MPC在同一控制结构中控制电磁变量和电变量,从而提高了系统的动态响应。同样,本研究中提出的有功和无功控制是通过在电流控制过程中解耦电网电流来实现的。最后,通过基于DD pmsg的带额定功率WTS的数值算例,验证了本文提出的控制策略的适用性,并与现有控制方法相比,证明了该控制策略的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信