AI-Enabled STAR-RIS Aided MISO ISAC Secure Communications

IF 6.6 1区 计算机科学 Q1 Multidisciplinary
Zhengyu Zhu;Mengfei Gong;Gangcan Sun;Peijia Liu;De Mi
{"title":"AI-Enabled STAR-RIS Aided MISO ISAC Secure Communications","authors":"Zhengyu Zhu;Mengfei Gong;Gangcan Sun;Peijia Liu;De Mi","doi":"10.26599/TST.2024.9010086","DOIUrl":null,"url":null,"abstract":"A simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided integrated sensing and communication (ISAC) dual-secure communication system is studied in this paper. The sensed target and legitimate users (LUs) are situated on the opposite sides of the STAR-RIS, and the energy splitting and time switching protocols are applied in the STAR-RIS, respectively. The long-term average security rate for LUs is maximized by the joint design of the base station (BS) transmit beamforming and receive filter, along with the STAR-RIS transmitting and reflecting coefficients, under guarantying the echo signal-to-noise ratio thresholds and rate constraints for the LUs. Since the channel information changes over time, conventional convex optimization techniques cannot provide the optimal performance for the system, and result in excessively high computational complexity in the exploration of the long-term gains for the system. Taking continuity control decisions into account, the deep deterministic policy gradient and soft actor-critic algorithms based on off-policy are applied to address the complex non-convex problem. Simulation results comprehensively evaluate the performance of the proposed two reinforcement learning algorithms and demonstrate that STAR-RIS is remarkably better than the two benchmarks in the ISAC system.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 3","pages":"998-1011"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817769","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10817769/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

A simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided integrated sensing and communication (ISAC) dual-secure communication system is studied in this paper. The sensed target and legitimate users (LUs) are situated on the opposite sides of the STAR-RIS, and the energy splitting and time switching protocols are applied in the STAR-RIS, respectively. The long-term average security rate for LUs is maximized by the joint design of the base station (BS) transmit beamforming and receive filter, along with the STAR-RIS transmitting and reflecting coefficients, under guarantying the echo signal-to-noise ratio thresholds and rate constraints for the LUs. Since the channel information changes over time, conventional convex optimization techniques cannot provide the optimal performance for the system, and result in excessively high computational complexity in the exploration of the long-term gains for the system. Taking continuity control decisions into account, the deep deterministic policy gradient and soft actor-critic algorithms based on off-policy are applied to address the complex non-convex problem. Simulation results comprehensively evaluate the performance of the proposed two reinforcement learning algorithms and demonstrate that STAR-RIS is remarkably better than the two benchmarks in the ISAC system.
启用人工智能的星- ris辅助MISO ISAC安全通信
研究了一种同时发射和反射可重构智能表面(STAR-RIS)辅助集成传感与通信(ISAC)双保密通信系统。感应目标用户和合法用户分别位于星- ris的两侧,星- ris采用能量分裂协议和时间交换协议。在保证单元回波信噪比阈值和速率约束的前提下,通过基站(BS)发射波束形成和接收滤波器以及STAR-RIS发射和反射系数的联合设计,使单元的长期平均安全率最大化。由于通道信息随时间变化,传统的凸优化技术不能为系统提供最佳性能,并且在探索系统的长期收益时导致过高的计算复杂度。在考虑连续性控制决策的基础上,采用深度确定性策略梯度和基于off-policy的软行为者评价算法来解决复杂的非凸问题。仿真结果综合评价了所提出的两种强化学习算法的性能,并表明STAR-RIS明显优于ISAC系统中的两种基准算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信