Siyu Heng;Ting Cheng;Jiaming Song;Zishu He;Luqing Liu;Yuanqing Wang
{"title":"Adaptive Dwell Scheduling Based on Dual-Side Time Pointers for Simultaneous Multi-Beam Radar","authors":"Siyu Heng;Ting Cheng;Jiaming Song;Zishu He;Luqing Liu;Yuanqing Wang","doi":"10.26599/TST.2023.9010161","DOIUrl":null,"url":null,"abstract":"Adaptive dwell scheduling is essential to achieve full performance for a simultaneous multi-beam radar system. The dwell scheduling for such a radar system considering desired execution time criterion is studied in this paper. The primary objective of this model is to achieve maximum scheduling gain and minimum scheduling cost while adhering to not only time, aperture, and frequency constraints, but also electromagnetic compatibility (EMC) constraint. The dwell scheduling algorithm is proposed to solve the above optimization problem, where several separation points are set on the timeline, so that each separator divides the scheduling interval into two sides. For the two sides, the dual-side time pointers are introduced, which move from the separator to both ends of the scheduling interval. The dwell tasks are analyzed in sequence at each analysis point based on their two-level synthetical priority. These tasks are then executed simultaneously by sharing the whole aperture under various constraints to accomplish multiple tasks concurrently. The above process is respectively conducted at each separator, and the final scheduling result is the one with the minimal cost among all. Simulation results prove that the proposed algorithm can achieve real-time dwell scheduling and outperform the existing algorithms in terms of scheduling performance.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 3","pages":"1190-1200"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817723","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10817723/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Adaptive dwell scheduling is essential to achieve full performance for a simultaneous multi-beam radar system. The dwell scheduling for such a radar system considering desired execution time criterion is studied in this paper. The primary objective of this model is to achieve maximum scheduling gain and minimum scheduling cost while adhering to not only time, aperture, and frequency constraints, but also electromagnetic compatibility (EMC) constraint. The dwell scheduling algorithm is proposed to solve the above optimization problem, where several separation points are set on the timeline, so that each separator divides the scheduling interval into two sides. For the two sides, the dual-side time pointers are introduced, which move from the separator to both ends of the scheduling interval. The dwell tasks are analyzed in sequence at each analysis point based on their two-level synthetical priority. These tasks are then executed simultaneously by sharing the whole aperture under various constraints to accomplish multiple tasks concurrently. The above process is respectively conducted at each separator, and the final scheduling result is the one with the minimal cost among all. Simulation results prove that the proposed algorithm can achieve real-time dwell scheduling and outperform the existing algorithms in terms of scheduling performance.
期刊介绍:
Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.