Advanced Deep Neural Network with Unified Feature-Aware and Label Embedding for Multi-Label Arrhythmias Classification

IF 6.6 1区 计算机科学 Q1 Multidisciplinary
Pan Xia;Zhongrui Bai;Yicheng Yao;Lirui Xu;Hao Zhang;Lidong Du;Xianxiang Chen;Qiao Ye;Yusi Zhu;Peng Wang;Xiaoran Li;Guangyun Wang;Zhen Fang
{"title":"Advanced Deep Neural Network with Unified Feature-Aware and Label Embedding for Multi-Label Arrhythmias Classification","authors":"Pan Xia;Zhongrui Bai;Yicheng Yao;Lirui Xu;Hao Zhang;Lidong Du;Xianxiang Chen;Qiao Ye;Yusi Zhu;Peng Wang;Xiaoran Li;Guangyun Wang;Zhen Fang","doi":"10.26599/TST.2023.9010162","DOIUrl":null,"url":null,"abstract":"Multi-label arrhythmias classification is of great significance to the diagnosis of cardiovascular disease, and it is a challenging task as it requires identifying the label subset most related to each instance. In this paper, by integrating a deep residual neural network and auto-encoder, we propose an advanced deep neural network (DNN) framework with unified feature-aware and label embedding to perform multi-label arrhythmias classification involving 30 types of arrhythmias. Firstly, a deep residual neural network is built to extract the complex pathological features from varying-dimensional electrocardiograms (ECGs). Secondly, the mean square error loss is adopted to learn a latent space associating the deep pathological features and the corresponding label data, and then to achieve unified feature-label embedding. Thirdly, the label-correlation aware loss is introduced to optimize the auto-encoder architecture, which enables our model to exploit label-correlation for improved multi-label prediction. Our proposed DNN model can allow end-to-end training and prediction, which can perform feature-aware, label embedding, and label-correlation aware prediction in a unified framework. Finally, our proposed model is evaluated on the currently largest public dataset worldwide, and achieves the challenge metric scores of 0.492, 0.495, and 0.490 on the 12-lead, 3-lead, and all-lead version ECGs, respectively. The performance of our approach outperforms other current state-of-the-art methods in the leave-one-dataset-out cross-validation setting, which demonstrates that our approach has great competitiveness in identifying a wider range of multi-label arrhythmias.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 3","pages":"1251-1269"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817700","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10817700/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-label arrhythmias classification is of great significance to the diagnosis of cardiovascular disease, and it is a challenging task as it requires identifying the label subset most related to each instance. In this paper, by integrating a deep residual neural network and auto-encoder, we propose an advanced deep neural network (DNN) framework with unified feature-aware and label embedding to perform multi-label arrhythmias classification involving 30 types of arrhythmias. Firstly, a deep residual neural network is built to extract the complex pathological features from varying-dimensional electrocardiograms (ECGs). Secondly, the mean square error loss is adopted to learn a latent space associating the deep pathological features and the corresponding label data, and then to achieve unified feature-label embedding. Thirdly, the label-correlation aware loss is introduced to optimize the auto-encoder architecture, which enables our model to exploit label-correlation for improved multi-label prediction. Our proposed DNN model can allow end-to-end training and prediction, which can perform feature-aware, label embedding, and label-correlation aware prediction in a unified framework. Finally, our proposed model is evaluated on the currently largest public dataset worldwide, and achieves the challenge metric scores of 0.492, 0.495, and 0.490 on the 12-lead, 3-lead, and all-lead version ECGs, respectively. The performance of our approach outperforms other current state-of-the-art methods in the leave-one-dataset-out cross-validation setting, which demonstrates that our approach has great competitiveness in identifying a wider range of multi-label arrhythmias.
基于统一特征感知和标签嵌入的高级深度神经网络多标签心律失常分类
多标签心律失常分类对心血管疾病的诊断具有重要意义,但需要确定与每个病例最相关的标签子集,是一项具有挑战性的任务。本文通过集成深度残差神经网络和自编码器,提出了一种具有统一特征感知和标签嵌入的先进深度神经网络(DNN)框架,对30种心律失常进行多标签分类。首先,构建深度残差神经网络,提取多维心电图的复杂病理特征;其次,采用均方误差损失学习深层病理特征与相应标签数据相关联的潜在空间,实现特征-标签的统一嵌入;第三,引入标签相关感知损失来优化自编码器结构,使我们的模型能够利用标签相关来改进多标签预测。我们提出的深度神经网络模型可以实现端到端的训练和预测,可以在统一的框架内进行特征感知、标签嵌入和标签相关感知的预测。最后,我们提出的模型在目前世界上最大的公共数据集上进行了评估,并在12导联、3导联和全导联版本的心电图上分别获得了0.492、0.495和0.490的挑战度量分数。我们的方法的性能优于其他当前最先进的方法在留下一个数据集的交叉验证设置,这表明我们的方法在识别更广泛的多标签心律失常方面具有很大的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信