Few-Shot Object Detection via Dual-Domain Feature Fusion and Patch-Level Attention

IF 6.6 1区 计算机科学 Q1 Multidisciplinary
Guangli Ren;Jierui Liu;Mengyao Wang;Peiyu Guan;Zhiqiang Cao;Junzhi Yu
{"title":"Few-Shot Object Detection via Dual-Domain Feature Fusion and Patch-Level Attention","authors":"Guangli Ren;Jierui Liu;Mengyao Wang;Peiyu Guan;Zhiqiang Cao;Junzhi Yu","doi":"10.26599/TST.2024.9010031","DOIUrl":null,"url":null,"abstract":"Few-shot object detection receives much attention with the ability to detect novel class objects using limited annotated data. The transfer learning-based solution becomes popular due to its simple training with good accuracy, however, it is still challenging to enrich the feature diversity during the training process. And fine-grained features are also insufficient for novel class detection. To deal with the problems, this paper proposes a novel few-shot object detection method based on dual-domain feature fusion and patch-level attention. Upon original base domain, an elementary domain with more category-agnostic features is superposed to construct a two-stream backbone, which benefits to enrich the feature diversity. To better integrate various features, a dual-domain feature fusion is designed, where the feature pairs with the same size are complementarily fused to extract more discriminative features. Moreover, a patch-wise feature refinement termed as patch-level attention is presented to mine internal relations among the patches, which enhances the adaptability to novel classes. In addition, a weighted classification loss is given to assist the fine-tuning of the classifier by combining extra features from FPN of the base training model. In this way, the few-shot detection quality to novel class objects is improved. Experiments on PASCAL VOC and MS COCO datasets verify the effectiveness of the method.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 3","pages":"1237-1250"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817768","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10817768/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Few-shot object detection receives much attention with the ability to detect novel class objects using limited annotated data. The transfer learning-based solution becomes popular due to its simple training with good accuracy, however, it is still challenging to enrich the feature diversity during the training process. And fine-grained features are also insufficient for novel class detection. To deal with the problems, this paper proposes a novel few-shot object detection method based on dual-domain feature fusion and patch-level attention. Upon original base domain, an elementary domain with more category-agnostic features is superposed to construct a two-stream backbone, which benefits to enrich the feature diversity. To better integrate various features, a dual-domain feature fusion is designed, where the feature pairs with the same size are complementarily fused to extract more discriminative features. Moreover, a patch-wise feature refinement termed as patch-level attention is presented to mine internal relations among the patches, which enhances the adaptability to novel classes. In addition, a weighted classification loss is given to assist the fine-tuning of the classifier by combining extra features from FPN of the base training model. In this way, the few-shot detection quality to novel class objects is improved. Experiments on PASCAL VOC and MS COCO datasets verify the effectiveness of the method.
基于双域特征融合和补丁级关注的小镜头目标检测
少射目标检测由于能够使用有限的注释数据检测新的类对象而受到广泛关注。基于迁移学习的解决方案以其训练简单、准确率高而广受欢迎,但在训练过程中如何丰富特征多样性仍然是一个挑战。细粒度的特征也不足以用于新的类检测。针对这一问题,提出了一种基于双域特征融合和补丁级关注的小镜头目标检测方法。在原始基域的基础上,叠加一个具有更多类别不可知特征的基本域,构成两流主干,有利于丰富特征的多样性。为了更好地融合各种特征,设计了双域特征融合,将大小相同的特征对进行互补融合,提取出更多的判别特征。此外,提出了一种基于补丁的特征细化方法,即补丁级关注,以挖掘补丁之间的内部关系,增强了对新类别的适应性。此外,通过结合基础训练模型的FPN的额外特征,给出加权分类损失来帮助分类器微调。这样可以提高对新类目标的少镜头检测质量。在PASCAL VOC和MS COCO数据集上的实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信