{"title":"High Capacity Reversible Data Hiding Algorithm in Encrypted Images Based on Image Adaptive MSB Prediction and Secret Sharing","authors":"Kaili Qi;Minqing Zhang;Fuqiang Di;Chao Jiang","doi":"10.26599/TST.2023.9010116","DOIUrl":null,"url":null,"abstract":"Until now, some reversible data hiding in encrypted images (RDH-EI) schemes based on secret sharing (SIS-RDHEI) still have the problems of not realizing diffusivity and high embedding capacity. Therefore, this paper innovatively proposes a high capacity RDH-EI scheme that combines adaptive most significant bit (MSB) prediction with secret sharing technology. Firstly, adaptive MSB prediction is performed on the original image and cryptographic feedback secret sharing strategy encrypts the spliced pixels to spare embedding space. In the data hiding phase, each encrypted image is sent to a data hider to embed the secret information independently. When \n<tex>$r$</tex>\n copies of the image carrying the secret text are collected, the original image can be recovered lossless and the secret information can be extracted. Performance evaluation shows that the proposed method in this paper has the diffusivity, reversibility, and separability. The last but the most important, it has higher embedding capacity. For \n<tex>$512 \\times 515$</tex>\n grayscale images, the average embedding rate reaches 4.7358 bits per pixel (bpp). Compared to the average embedding rate that can be achieved by the Wang et al.'s SIS-RDHEI scheme, the proposed scheme with (2, 2), (2, 3), (2, 4), (3, 4), and (3, 5)-threshold can increase by 0.7358 bpp, 2.0658 bpp, 2.7358 bpp, 0.7358 bpp, and 1.5358 bpp, respectively.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 3","pages":"1139-1156"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817719","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10817719/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Until now, some reversible data hiding in encrypted images (RDH-EI) schemes based on secret sharing (SIS-RDHEI) still have the problems of not realizing diffusivity and high embedding capacity. Therefore, this paper innovatively proposes a high capacity RDH-EI scheme that combines adaptive most significant bit (MSB) prediction with secret sharing technology. Firstly, adaptive MSB prediction is performed on the original image and cryptographic feedback secret sharing strategy encrypts the spliced pixels to spare embedding space. In the data hiding phase, each encrypted image is sent to a data hider to embed the secret information independently. When
$r$
copies of the image carrying the secret text are collected, the original image can be recovered lossless and the secret information can be extracted. Performance evaluation shows that the proposed method in this paper has the diffusivity, reversibility, and separability. The last but the most important, it has higher embedding capacity. For
$512 \times 515$
grayscale images, the average embedding rate reaches 4.7358 bits per pixel (bpp). Compared to the average embedding rate that can be achieved by the Wang et al.'s SIS-RDHEI scheme, the proposed scheme with (2, 2), (2, 3), (2, 4), (3, 4), and (3, 5)-threshold can increase by 0.7358 bpp, 2.0658 bpp, 2.7358 bpp, 0.7358 bpp, and 1.5358 bpp, respectively.
期刊介绍:
Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.