Chao Wang;Jingjing Yu;Zhi Pei;Qidi Wang;Chunlei Hong
{"title":"A First Successful Factorization of RSA-2048 Integer by D-Wave Quantum Computer","authors":"Chao Wang;Jingjing Yu;Zhi Pei;Qidi Wang;Chunlei Hong","doi":"10.26599/TST.2024.9010028","DOIUrl":null,"url":null,"abstract":"Integer factorization, the core of the Rivest-Shamir-Adleman (RSA) attack, is an exciting but formidable challenge. As of this year, a group of researchers' latest quantum supremacy chip remains unavailable for cryptanalysis. Quantum annealing (QA) has a unique quantum tunneling advantage, which can escape local extremum in the exponential solution space, finding the global optimal solution with a higher probability. Consequently, we consider it an effective method for attacking cryptography. According to Origin Quantum Computing, QA computers are able to factor numbers several orders of magnitude larger than universal quantum computers. We try to transform the integer factorization problem in RSA attacks into a combinatorial optimization problem by using the QA algorithm of D-Wave quantum computer, and attack RSA-2048 which is composed of a class of special integers. The experiment factored this class of integers of size 2\n<sup>2048</sup>\n, \n<tex>$N=p\\times q$</tex>\n As an example, the article gives the results of 10 RSA-2048 attacks in the appendix. This marks the first successful factorization of RSA-2048 by D-Wave quantum computer, regardless of employing mathematical or quantum techniques, despite dealing with special integers, exceeding 2\n<sup>1061</sup>\n−1 of California State University. This experiment verifies that the QA algorithm based on D-Wave is an effective method to attack RSA.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 3","pages":"1270-1282"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817698","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10817698/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Integer factorization, the core of the Rivest-Shamir-Adleman (RSA) attack, is an exciting but formidable challenge. As of this year, a group of researchers' latest quantum supremacy chip remains unavailable for cryptanalysis. Quantum annealing (QA) has a unique quantum tunneling advantage, which can escape local extremum in the exponential solution space, finding the global optimal solution with a higher probability. Consequently, we consider it an effective method for attacking cryptography. According to Origin Quantum Computing, QA computers are able to factor numbers several orders of magnitude larger than universal quantum computers. We try to transform the integer factorization problem in RSA attacks into a combinatorial optimization problem by using the QA algorithm of D-Wave quantum computer, and attack RSA-2048 which is composed of a class of special integers. The experiment factored this class of integers of size 2
2048
,
$N=p\times q$
As an example, the article gives the results of 10 RSA-2048 attacks in the appendix. This marks the first successful factorization of RSA-2048 by D-Wave quantum computer, regardless of employing mathematical or quantum techniques, despite dealing with special integers, exceeding 2
1061
−1 of California State University. This experiment verifies that the QA algorithm based on D-Wave is an effective method to attack RSA.
期刊介绍:
Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.