A Fine-Grained Image Classification Model Based on Hybrid Attention and Pyramidal Convolution

IF 6.6 1区 计算机科学 Q1 Multidisciplinary
Sifeng Wang;Shengxiang Li;Anran Li;Zhaoan Dong;Guangshun Li;Chao Yan
{"title":"A Fine-Grained Image Classification Model Based on Hybrid Attention and Pyramidal Convolution","authors":"Sifeng Wang;Shengxiang Li;Anran Li;Zhaoan Dong;Guangshun Li;Chao Yan","doi":"10.26599/TST.2024.9010025","DOIUrl":null,"url":null,"abstract":"Finding more specific subcategories within a larger category is the goal of fine-grained image classification (FGIC), and the key is to find local discriminative regions of visual features. Most existing methods use traditional convolutional operations to achieve fine-grained image classification. However, traditional convolution cannot extract multi-scale features of an image and existing methods are susceptible to interference from image background information. Therefore, to address the above problems, this paper proposes an FGIC model (Attention-PCNN) based on hybrid attention mechanism and pyramidal convolution. The model feeds the multi-scale features extracted by the pyramidal convolutional neural network into two branches capturing global and local information respectively. In particular, a hybrid attention mechanism is added to the branch capturing global information in order to reduce the interference of image background information and make the model pay more attention to the target region with fine-grained features. In addition, the mutual-channel loss (MC-LOSS) is introduced in the local information branch to capture fine-grained features. We evaluated the model on three publicly available datasets CUB-200-2011, Stanford Cars, FGVC-Aircraft, etc. Compared to the state-of-the-art methods, the results show that Attention-PCNN performs better.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 3","pages":"1283-1293"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817763","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10817763/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Finding more specific subcategories within a larger category is the goal of fine-grained image classification (FGIC), and the key is to find local discriminative regions of visual features. Most existing methods use traditional convolutional operations to achieve fine-grained image classification. However, traditional convolution cannot extract multi-scale features of an image and existing methods are susceptible to interference from image background information. Therefore, to address the above problems, this paper proposes an FGIC model (Attention-PCNN) based on hybrid attention mechanism and pyramidal convolution. The model feeds the multi-scale features extracted by the pyramidal convolutional neural network into two branches capturing global and local information respectively. In particular, a hybrid attention mechanism is added to the branch capturing global information in order to reduce the interference of image background information and make the model pay more attention to the target region with fine-grained features. In addition, the mutual-channel loss (MC-LOSS) is introduced in the local information branch to capture fine-grained features. We evaluated the model on three publicly available datasets CUB-200-2011, Stanford Cars, FGVC-Aircraft, etc. Compared to the state-of-the-art methods, the results show that Attention-PCNN performs better.
基于混合注意力和金字塔卷积的细粒度图像分类模型
细粒度图像分类(fine-grained image classification, FGIC)的目标是在更大的类别中找到更具体的子类别,关键是找到视觉特征的局部判别区域。现有的方法大多使用传统的卷积运算来实现细粒度的图像分类。然而,传统的卷积方法不能提取图像的多尺度特征,并且容易受到图像背景信息的干扰。因此,为了解决上述问题,本文提出了一种基于混合注意机制和金字塔卷积的FGIC (attention - pcnn)模型。该模型将锥体卷积神经网络提取的多尺度特征馈送到两个分支中,分别捕获全局和局部信息。特别是在全局信息捕获分支中加入了混合注意机制,以减少图像背景信息的干扰,使模型更加关注具有细粒度特征的目标区域。此外,在局部信息分支中引入了互信道损失(MC-LOSS)来捕获细粒度特征。我们在三个公开可用的数据集CUB-200-2011、斯坦福汽车、FGVC-Aircraft等上对模型进行了评估。结果表明,与现有方法相比,Attention-PCNN具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信