Vacancy formation mechanism and synergy with doping in NiS2-based electrocatalyst for benzyl alcohol oxidation and hydrogen evolution

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Fang Li, Haili Lin, huiqin Yu, Pengfei Du, Yang Wang, Jing Cao
{"title":"Vacancy formation mechanism and synergy with doping in NiS2-based electrocatalyst for benzyl alcohol oxidation and hydrogen evolution","authors":"Fang Li, Haili Lin, huiqin Yu, Pengfei Du, Yang Wang, Jing Cao","doi":"10.1039/d4qi03098b","DOIUrl":null,"url":null,"abstract":"Substituting the kinetic-sluggish oxygen evolution reaction with the thermodynamically favorable benzyl alcohol oxidation reaction is a compelling strategy to produce high-value chemicals and hydrogen. Herein, phosphorus (P) doped hollow spherical shell structure NiS2 with abundant sulfur (S) vacancy, denoted as Svac-P-NiS2 is synthesized and investigated as a bifunctional electrocatalyst for benzyl alcohol (BA) oxidation and hydrogen evolution reaction (HER). Two important processes occur during P doping: (1) promoting the formation of high valence nickel (Ni3+), where electron filling in the Ni eg orbit flows to the foreign P, and (2) directing the Ni-S antibonding orbit more susceptible to accept electrons and facilitating the formation of S vacancy. The above results are proved by X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and the crystal orbital Hamilton population (COHP) analysis, respectively. The high valence Ni as the high-energy catalytic active site lowers the energy barrier of the reaction rate-determining step and accelerates reaction kinetics. Meanwhile, the S vacancy contributes to the activation of C-H bonds in benzyl alcohol which is demonstrated by differential charge density calculation and quantified by pCOHP calculation. Benefitting from these advantages, dopant and vacancy exhibit the indispensable synergistic effect in the electrocatalytic process, which greatly promotes the electrocatalytic performance of Svac-P-NiS2. This work provided insights into the formation mechanisms of vacancy in doped materials and elucidated the nature of the improved catalyst performance.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"54 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi03098b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Substituting the kinetic-sluggish oxygen evolution reaction with the thermodynamically favorable benzyl alcohol oxidation reaction is a compelling strategy to produce high-value chemicals and hydrogen. Herein, phosphorus (P) doped hollow spherical shell structure NiS2 with abundant sulfur (S) vacancy, denoted as Svac-P-NiS2 is synthesized and investigated as a bifunctional electrocatalyst for benzyl alcohol (BA) oxidation and hydrogen evolution reaction (HER). Two important processes occur during P doping: (1) promoting the formation of high valence nickel (Ni3+), where electron filling in the Ni eg orbit flows to the foreign P, and (2) directing the Ni-S antibonding orbit more susceptible to accept electrons and facilitating the formation of S vacancy. The above results are proved by X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and the crystal orbital Hamilton population (COHP) analysis, respectively. The high valence Ni as the high-energy catalytic active site lowers the energy barrier of the reaction rate-determining step and accelerates reaction kinetics. Meanwhile, the S vacancy contributes to the activation of C-H bonds in benzyl alcohol which is demonstrated by differential charge density calculation and quantified by pCOHP calculation. Benefitting from these advantages, dopant and vacancy exhibit the indispensable synergistic effect in the electrocatalytic process, which greatly promotes the electrocatalytic performance of Svac-P-NiS2. This work provided insights into the formation mechanisms of vacancy in doped materials and elucidated the nature of the improved catalyst performance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信