Characterization of an Unexpected μ3 Adsorption of Molecular Oxygen on Ag(100) with Low-Temperature STM

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Merve Ercelik, Andrés Pinar Solé, Liang Zhang, Piotr Kot, Jinkyung Kim, Jungseok Chae, Lukas E. Spree, Hua Guo, Andreas J. Heinrich, Yujeong Bae, Dmitriy Borodin
{"title":"Characterization of an Unexpected μ3 Adsorption of Molecular Oxygen on Ag(100) with Low-Temperature STM","authors":"Merve Ercelik, Andrés Pinar Solé, Liang Zhang, Piotr Kot, Jinkyung Kim, Jungseok Chae, Lukas E. Spree, Hua Guo, Andreas J. Heinrich, Yujeong Bae, Dmitriy Borodin","doi":"10.1021/acs.jpcc.4c06572","DOIUrl":null,"url":null,"abstract":"Precise description of the interaction between molecular oxygen and metal surfaces is one of the most challenging topics in quantum chemistry. In this work, we use low-temperature scanning tunneling microscopy (STM) to identify and characterize an adsorption state of molecular oxygen that coordinates to three Ag atoms (μ<sub>3</sub>) on Ag(100). Surprisingly, μ<sub>3</sub>-O<sub>2</sub> cannot be identified as a stable configuration with generalized gradient approximation (GGA)-level density functional theory (DFT) calculations. Through inelastic electron tunneling spectroscopy (IETS), we identify three vibrational modes of individual μ<sub>3</sub>-O<sub>2</sub> and assign them to out-of-plane hindered rotation (HR) at 38.0 meV, in-plane HR at 32.4 meV, and in-plane hindered translation (HT) at 22.0 meV. We determine the barrier for rotational isomerization of μ<sub>3</sub>-O<sub>2</sub> to be 69.3 meV from tunneling electrons-induced rotations. The inability of theory to predict the experiment stems most likely from self-interaction errors inherent to GGA-DFT, which leads to an inaccurate description of localized charges. We speculate that the μ<sub>3</sub>-O<sub>2</sub> configuration represents a formal molecular oxygen anion and assign the ±11 meV excitation in the IETS to a transition between spin–orbit states of the surface-bound anion.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"134 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c06572","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Precise description of the interaction between molecular oxygen and metal surfaces is one of the most challenging topics in quantum chemistry. In this work, we use low-temperature scanning tunneling microscopy (STM) to identify and characterize an adsorption state of molecular oxygen that coordinates to three Ag atoms (μ3) on Ag(100). Surprisingly, μ3-O2 cannot be identified as a stable configuration with generalized gradient approximation (GGA)-level density functional theory (DFT) calculations. Through inelastic electron tunneling spectroscopy (IETS), we identify three vibrational modes of individual μ3-O2 and assign them to out-of-plane hindered rotation (HR) at 38.0 meV, in-plane HR at 32.4 meV, and in-plane hindered translation (HT) at 22.0 meV. We determine the barrier for rotational isomerization of μ3-O2 to be 69.3 meV from tunneling electrons-induced rotations. The inability of theory to predict the experiment stems most likely from self-interaction errors inherent to GGA-DFT, which leads to an inaccurate description of localized charges. We speculate that the μ3-O2 configuration represents a formal molecular oxygen anion and assign the ±11 meV excitation in the IETS to a transition between spin–orbit states of the surface-bound anion.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信