Enhanced DTCMR With Cascaded Alignment and Adaptive Diffusion

Fanwen Wang;Yihao Luo;Camila Munoz;Ke Wen;Yaqing Luo;Jiahao Huang;Yinzhe Wu;Zohya Khalique;Maria Molto;Ramyah Rajakulasingam;Ranil de Silva;Dudley J. Pennell;Pedro F. Ferreira;Andrew D. Scott;Sonia Nielles-Vallespin;Guang Yang
{"title":"Enhanced DTCMR With Cascaded Alignment and Adaptive Diffusion","authors":"Fanwen Wang;Yihao Luo;Camila Munoz;Ke Wen;Yaqing Luo;Jiahao Huang;Yinzhe Wu;Zohya Khalique;Maria Molto;Ramyah Rajakulasingam;Ranil de Silva;Dudley J. Pennell;Pedro F. Ferreira;Andrew D. Scott;Sonia Nielles-Vallespin;Guang Yang","doi":"10.1109/TMI.2024.3523431","DOIUrl":null,"url":null,"abstract":"Diffusion tensor cardiovascular magnetic resonance (DTCMR) is the only non-invasive method for visualizing myocardial microstructure, but it is challenged by inconsistent breath-holds and imperfect cardiac triggering, causing in-plane shifts and through-plane warping with an inadequate tensor fitting. While rigid registration corrects in-plane shifts, deformable registration risks distorting the diffusion distribution, and selecting a reference frame among low SNR frames is challenging. Existing pairwise deep learning and iterative methods are unsuitable for DTCMR due to their inability to handle the drastic in-plane motion and disentangle the diffusion contrast distortion with through-plane motions on low SNR frames, which compromises the accuracy of clinical biomarker tensor estimation. Our study introduces a novel deep learning framework incorporating tensor information for groupwise deformable registration, effectively correcting intra-subject inter-frame motion. This framework features a cascaded registration branch for addressing in-plane and through-plane motions and a parallel branch for generating pseudo-frames with diffusion contrasts and template updates to guide registration with a refined loss function and denoising. We evaluated our method on four DTCMR-specific metrics using data from over 900 cases from 2012 to 2023. Our method outperformed three traditional and two deep learning-based methods, achieving reduced fitting errors, the lowest percentage of negative eigenvalues at 0.446%, the highest R2 of HA line profiles at 0.911, no negative Jacobian Determinant, and the shortest reference time of 0.06 seconds per case. In conclusion, our deep learning framework significantly improves DTCMR imaging by effectively correcting inter-frame motion and surpassing existing methods across multiple metrics, demonstrating substantial clinical potential.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 4","pages":"1866-1877"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10818592/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion tensor cardiovascular magnetic resonance (DTCMR) is the only non-invasive method for visualizing myocardial microstructure, but it is challenged by inconsistent breath-holds and imperfect cardiac triggering, causing in-plane shifts and through-plane warping with an inadequate tensor fitting. While rigid registration corrects in-plane shifts, deformable registration risks distorting the diffusion distribution, and selecting a reference frame among low SNR frames is challenging. Existing pairwise deep learning and iterative methods are unsuitable for DTCMR due to their inability to handle the drastic in-plane motion and disentangle the diffusion contrast distortion with through-plane motions on low SNR frames, which compromises the accuracy of clinical biomarker tensor estimation. Our study introduces a novel deep learning framework incorporating tensor information for groupwise deformable registration, effectively correcting intra-subject inter-frame motion. This framework features a cascaded registration branch for addressing in-plane and through-plane motions and a parallel branch for generating pseudo-frames with diffusion contrasts and template updates to guide registration with a refined loss function and denoising. We evaluated our method on four DTCMR-specific metrics using data from over 900 cases from 2012 to 2023. Our method outperformed three traditional and two deep learning-based methods, achieving reduced fitting errors, the lowest percentage of negative eigenvalues at 0.446%, the highest R2 of HA line profiles at 0.911, no negative Jacobian Determinant, and the shortest reference time of 0.06 seconds per case. In conclusion, our deep learning framework significantly improves DTCMR imaging by effectively correcting inter-frame motion and surpassing existing methods across multiple metrics, demonstrating substantial clinical potential.
基于级联对准和自适应扩散的增强DTCMR
弥散张量心血管磁共振(DTCMR)是唯一一种用于观察心肌微观结构的非侵入性方法,但它受到不一致的憋气和不完美的心脏触发的挑战,导致平面内偏移和通过平面翘曲与不适当的张量拟合。刚性配准可以校正平面内偏移,而变形配准有可能扭曲扩散分布,并且在低信噪比帧中选择参考帧具有挑战性。现有的两两深度学习和迭代方法不适合DTCMR,因为它们无法处理在低信噪比帧上剧烈的平面内运动和通过平面运动的扩散对比度失真,从而影响了临床生物标志物张量估计的准确性。我们的研究引入了一种新的深度学习框架,结合张量信息进行分组可变形配准,有效地纠正了主体内帧间的运动。该框架具有用于寻址平面内和平面内运动的级联注册分支和用于生成具有扩散对比和模板更新的伪帧的并行分支,以指导使用精细损失函数和去噪的注册。我们使用2012年至2023年900多例病例的数据,对我们的方法进行了四项dtcmr特定指标的评估。该方法优于三种传统方法和两种基于深度学习的方法,实现了较小的拟合误差,负特征值的最低百分比为0.446%,HA线轮廓的最高R2为0.911,无负雅可比行列式,最短参考时间为0.06秒/例。总之,我们的深度学习框架通过有效纠正帧间运动和超越多个指标的现有方法,显着改善了DTCMR成像,显示出巨大的临床潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信