MRI Motion Correction Through Disentangled CycleGAN Based on Multi-Mask K-Space Subsampling

Gang Chen;Han Xie;Xinglong Rao;Xinjie Liu;Martins Otikovs;Lucio Frydman;Peng Sun;Zhi Zhang;Feng Pan;Lian Yang;Xin Zhou;Maili Liu;Qingjia Bao;Chaoyang Liu
{"title":"MRI Motion Correction Through Disentangled CycleGAN Based on Multi-Mask K-Space Subsampling","authors":"Gang Chen;Han Xie;Xinglong Rao;Xinjie Liu;Martins Otikovs;Lucio Frydman;Peng Sun;Zhi Zhang;Feng Pan;Lian Yang;Xin Zhou;Maili Liu;Qingjia Bao;Chaoyang Liu","doi":"10.1109/TMI.2024.3523949","DOIUrl":null,"url":null,"abstract":"This work proposes a new retrospective motion correction method, termed DCGAN-MS, which employs disentangled CycleGAN based on multi-mask k-space subsampling (DCGAN-MS) to address the image domain translation challenge. The multi-mask k-space subsampling operator is utilized to decrease the complexity of motion artifacts by randomly discarding motion-affected k-space lines. The network then disentangles the subsampled, motion-corrupted images into content and artifact features using specialized encoders, and generates motion-corrected images by decoding the content features. By utilizing multi-mask k-space subsampling, motion artifact features become more sparse compared to the original image domain, enhancing the efficiency of the DCGAN-MS network. This method effectively corrects motion artifacts in clinical gadoxetic acid-enhanced human liver MRI, human brain MRI from fastMRI, and preclinical rodent brain MRI. Quantitative improvements are demonstrated with SSIM values increasing from 0.75 to 0.86 for human liver MRI with simulated motion artifacts, and from 0.72 to 0.82 for rodent brain MRI with simulated motion artifacts. Correspondingly, PSNR values increased from 26.09 to 31.09 and from 25.10 to 31.77. The method’s performance was further validated on clinical and preclinical motion-corrupted MRI using the Kernel Inception Distance (KID) and Fréchet Inception Distance (FID) metrics. Additionally, ablation experiments were conducted to confirm the effectiveness of the multi-mask k-space subsampling approach.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 4","pages":"1907-1921"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10818568/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a new retrospective motion correction method, termed DCGAN-MS, which employs disentangled CycleGAN based on multi-mask k-space subsampling (DCGAN-MS) to address the image domain translation challenge. The multi-mask k-space subsampling operator is utilized to decrease the complexity of motion artifacts by randomly discarding motion-affected k-space lines. The network then disentangles the subsampled, motion-corrupted images into content and artifact features using specialized encoders, and generates motion-corrected images by decoding the content features. By utilizing multi-mask k-space subsampling, motion artifact features become more sparse compared to the original image domain, enhancing the efficiency of the DCGAN-MS network. This method effectively corrects motion artifacts in clinical gadoxetic acid-enhanced human liver MRI, human brain MRI from fastMRI, and preclinical rodent brain MRI. Quantitative improvements are demonstrated with SSIM values increasing from 0.75 to 0.86 for human liver MRI with simulated motion artifacts, and from 0.72 to 0.82 for rodent brain MRI with simulated motion artifacts. Correspondingly, PSNR values increased from 26.09 to 31.09 and from 25.10 to 31.77. The method’s performance was further validated on clinical and preclinical motion-corrupted MRI using the Kernel Inception Distance (KID) and Fréchet Inception Distance (FID) metrics. Additionally, ablation experiments were conducted to confirm the effectiveness of the multi-mask k-space subsampling approach.
基于多掩模k空间子采样的解纠缠CycleGAN MRI运动校正
本工作提出了一种新的回顾性运动校正方法,称为DCGAN-MS,该方法采用基于多掩码k空间子采样(DCGAN-MS)的解纠缠CycleGAN来解决图像域平移挑战。利用多掩码k空间子采样算子,通过随机丢弃受运动影响的k空间线来降低运动伪影的复杂性。然后,该网络使用专门的编码器将子采样、运动损坏的图像分解为内容和伪特征,并通过解码内容特征生成运动校正的图像。通过利用多掩码k空间子采样,使运动伪像特征比原始图像域更加稀疏,提高了DCGAN-MS网络的效率。该方法可有效纠正临床加多乙酸增强的人类肝脏MRI、快速MRI的人类大脑MRI和临床前啮齿动物大脑MRI中的运动伪影。模拟运动伪影的人类肝脏MRI的SSIM值从0.75增加到0.86,模拟运动伪影的啮齿动物脑MRI的SSIM值从0.72增加到0.82。相应的,PSNR值从26.09增加到31.09,从25.10增加到31.77。使用核起始距离(KID)和fr起始距离(FID)指标在临床和临床前运动损坏MRI上进一步验证了该方法的性能。此外,还进行了烧蚀实验来验证多掩模k空间子采样方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信