Hao Luo, Bin Hu, Xiang-Rong Gu, Jing Chen, Xiao-Qing Fan, Wei Zhang, Ren-Tao Wang, Xian-Dong He, Wei Guo, Nan Dai, Dan Jian, Qing Li, Cheng-Xiong Xu, Hua Jin
{"title":"The miR-23a/27a/24 − 2 cluster drives immune evasion and resistance to PD-1/PD-L1 blockade in non-small cell lung cancer","authors":"Hao Luo, Bin Hu, Xiang-Rong Gu, Jing Chen, Xiao-Qing Fan, Wei Zhang, Ren-Tao Wang, Xian-Dong He, Wei Guo, Nan Dai, Dan Jian, Qing Li, Cheng-Xiong Xu, Hua Jin","doi":"10.1186/s12943-024-02201-w","DOIUrl":null,"url":null,"abstract":"Programmed cell death protein ligand-1 (PD-L1) and major histocompatibility complex I (MHC-I) are key molecules related to tumor immune evasion and resistance to programmed cell death protein 1 (PD-1)/PD-L1 blockade. Here, we demonstrated that the upregulation of all miRNAs in the miR-23a/27a/24 − 2 cluster was correlated with poor survival, immune evasion and PD-1/PD-L1 blockade resistance in patients with non-small cell lung cancer (NSCLC). The overexpression of all miRNAs in the miR-23a/27a/24 − 2 cluster upregulated PD-L1 expression by targeting Cbl proto-oncogene B (CBLB) and downregulated MHC-I expression by increasing the level of eukaryotic initiation factor 3B (eIF3B) via the targeting of microphthalmia-associated transcription factor (MITF). In addition, we demonstrated that the expression of the miR-23a/27a/24 − 2 cluster of miRNAs is maintained in NSCLC through increased Wnt/β-catenin signaling-regulated interaction of transcription factor 4 (TCF4) and the miR-23a/27a/24 − 2 cluster promoter. Notably, pharmacologic targeting of the eIF3B pathway dramatically increased sensitivity to PD-1/PD-L1 blockade in patients with high expression of the miR-23a/27a/24 − 2 cluster in NSCLC. This effect was achieved by increasing MHC-I expression while maintaining high expression of PD-L1 induced by the miR-23a/27a/24 − 2 cluster. In summary, we elucidate the mechanism by which the miR-23a/27a/24 − 2 cluster miRNAs maintain their own expression and the molecular mechanism by which the miR-23a/27a/24 − 2 cluster miRNAs promote tumor immune evasion and PD-1/PD-L1 blockade resistance. In addition, we provide a novel strategy for the treatment of NSCLC expressing high levels of the miR-23a/27a/24 − 2 cluster.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"26 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-024-02201-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Programmed cell death protein ligand-1 (PD-L1) and major histocompatibility complex I (MHC-I) are key molecules related to tumor immune evasion and resistance to programmed cell death protein 1 (PD-1)/PD-L1 blockade. Here, we demonstrated that the upregulation of all miRNAs in the miR-23a/27a/24 − 2 cluster was correlated with poor survival, immune evasion and PD-1/PD-L1 blockade resistance in patients with non-small cell lung cancer (NSCLC). The overexpression of all miRNAs in the miR-23a/27a/24 − 2 cluster upregulated PD-L1 expression by targeting Cbl proto-oncogene B (CBLB) and downregulated MHC-I expression by increasing the level of eukaryotic initiation factor 3B (eIF3B) via the targeting of microphthalmia-associated transcription factor (MITF). In addition, we demonstrated that the expression of the miR-23a/27a/24 − 2 cluster of miRNAs is maintained in NSCLC through increased Wnt/β-catenin signaling-regulated interaction of transcription factor 4 (TCF4) and the miR-23a/27a/24 − 2 cluster promoter. Notably, pharmacologic targeting of the eIF3B pathway dramatically increased sensitivity to PD-1/PD-L1 blockade in patients with high expression of the miR-23a/27a/24 − 2 cluster in NSCLC. This effect was achieved by increasing MHC-I expression while maintaining high expression of PD-L1 induced by the miR-23a/27a/24 − 2 cluster. In summary, we elucidate the mechanism by which the miR-23a/27a/24 − 2 cluster miRNAs maintain their own expression and the molecular mechanism by which the miR-23a/27a/24 − 2 cluster miRNAs promote tumor immune evasion and PD-1/PD-L1 blockade resistance. In addition, we provide a novel strategy for the treatment of NSCLC expressing high levels of the miR-23a/27a/24 − 2 cluster.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.