A novel ensemble ARIMA-LSTM approach for evaluating COVID-19 cases and future outbreak preparedness.

Health Care Science Pub Date : 2024-12-15 eCollection Date: 2024-12-01 DOI:10.1002/hcs2.123
Somit Jain, Shobhit Agrawal, Eshaan Mohapatra, Kathiravan Srinivasan
{"title":"A novel ensemble ARIMA-LSTM approach for evaluating COVID-19 cases and future outbreak preparedness.","authors":"Somit Jain, Shobhit Agrawal, Eshaan Mohapatra, Kathiravan Srinivasan","doi":"10.1002/hcs2.123","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The global impact of the highly contagious COVID-19 virus has created unprecedented challenges, significantly impacting public health and economies worldwide. This research article conducts a time series analysis of COVID-19 data across various countries, including India, Brazil, Russia, and the United States, with a particular emphasis on total confirmed cases.</p><p><strong>Methods: </strong>The proposed approach combines auto-regressive integrated moving average (ARIMA)'s ability to capture linear trends and seasonality with long short-term memory (LSTM) networks, which are designed to learn complex nonlinear dependencies in the data. This hybrid approach surpasses both individual models and existing ARIMA-artificial neural network (ANN) hybrids, which often struggle with highly nonlinear time series like COVID-19 data. By integrating ARIMA and LSTM, the model aims to achieve superior forecasting accuracy compared to baseline models, including ARIMA, Gated Recurrent Unit (GRU), LSTM, and Prophet.</p><p><strong>Results: </strong>The hybrid ARIMA-LSTM model outperformed the benchmark models, achieving a mean absolute percentage error (MAPE) score of 2.4%. Among the benchmark models, GRU performed the best with a MAPE score of 2.9%, followed by LSTM with a score of 3.6%.</p><p><strong>Conclusions: </strong>The proposed ARIMA-LSTM hybrid model outperforms ARIMA, GRU, LSTM, Prophet, and the ARIMA-ANN hybrid model when evaluating using metrics like MAPE, symmetric mean absolute percentage error, and median absolute percentage error across all countries analyzed. These findings have the potential to significantly improve preparedness and response efforts by public health authorities, allowing for more efficient resource allocation and targeted interventions.</p>","PeriodicalId":100601,"journal":{"name":"Health Care Science","volume":"3 6","pages":"409-425"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671211/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/hcs2.123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The global impact of the highly contagious COVID-19 virus has created unprecedented challenges, significantly impacting public health and economies worldwide. This research article conducts a time series analysis of COVID-19 data across various countries, including India, Brazil, Russia, and the United States, with a particular emphasis on total confirmed cases.

Methods: The proposed approach combines auto-regressive integrated moving average (ARIMA)'s ability to capture linear trends and seasonality with long short-term memory (LSTM) networks, which are designed to learn complex nonlinear dependencies in the data. This hybrid approach surpasses both individual models and existing ARIMA-artificial neural network (ANN) hybrids, which often struggle with highly nonlinear time series like COVID-19 data. By integrating ARIMA and LSTM, the model aims to achieve superior forecasting accuracy compared to baseline models, including ARIMA, Gated Recurrent Unit (GRU), LSTM, and Prophet.

Results: The hybrid ARIMA-LSTM model outperformed the benchmark models, achieving a mean absolute percentage error (MAPE) score of 2.4%. Among the benchmark models, GRU performed the best with a MAPE score of 2.9%, followed by LSTM with a score of 3.6%.

Conclusions: The proposed ARIMA-LSTM hybrid model outperforms ARIMA, GRU, LSTM, Prophet, and the ARIMA-ANN hybrid model when evaluating using metrics like MAPE, symmetric mean absolute percentage error, and median absolute percentage error across all countries analyzed. These findings have the potential to significantly improve preparedness and response efforts by public health authorities, allowing for more efficient resource allocation and targeted interventions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信