Protomix: a Python package for 1H-NMR metabolomics data preprocessing.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2024-11-27 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbae192
Mohammed Zniber, Youssef Fatihi, Tan-Phat Huynh
{"title":"Protomix: a Python package for <sup>1</sup>H-NMR metabolomics data preprocessing.","authors":"Mohammed Zniber, Youssef Fatihi, Tan-Phat Huynh","doi":"10.1093/bioadv/vbae192","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>NMR-based metabolomics is a field driven by technological advancements, necessitating the use of advanced preprocessing tools. Despite this need, there is a remarkable scarcity of comprehensive and user-friendly preprocessing tools in Python. To bridge this gap, we have developed Protomix-a Python package designed for metabolomics research. Protomix offers a set of automated, efficient, and user-friendly signal-preprocessing steps, tailored to streamline and enhance the preprocessing phase in metabolomics studies.</p><p><strong>Results: </strong>This package presents a comprehensive preprocessing pipeline compatible with various data analysis tools. It encompasses a suite of functionalities for data extraction, preprocessing, and interactive visualization. Additionally, it includes a tutorial in the form of a Python Jupyter notebook, specifically designed for the analysis of 1D <sup>1</sup>H-NMR metabolomics data related to prostate cancer and benign prostatic hyperplasia.</p><p><strong>Availability and implementation: </strong>Protomix can be accessed at https://github.com/mzniber/protomix and https://protomix.readthedocs.io/en/latest/index.html.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbae192"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671038/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: NMR-based metabolomics is a field driven by technological advancements, necessitating the use of advanced preprocessing tools. Despite this need, there is a remarkable scarcity of comprehensive and user-friendly preprocessing tools in Python. To bridge this gap, we have developed Protomix-a Python package designed for metabolomics research. Protomix offers a set of automated, efficient, and user-friendly signal-preprocessing steps, tailored to streamline and enhance the preprocessing phase in metabolomics studies.

Results: This package presents a comprehensive preprocessing pipeline compatible with various data analysis tools. It encompasses a suite of functionalities for data extraction, preprocessing, and interactive visualization. Additionally, it includes a tutorial in the form of a Python Jupyter notebook, specifically designed for the analysis of 1D 1H-NMR metabolomics data related to prostate cancer and benign prostatic hyperplasia.

Availability and implementation: Protomix can be accessed at https://github.com/mzniber/protomix and https://protomix.readthedocs.io/en/latest/index.html.

Protomix:用于1H-NMR代谢组学数据预处理的Python包。
动机:基于核磁共振的代谢组学是一个由技术进步驱动的领域,需要使用先进的预处理工具。尽管有这种需求,但Python中缺乏全面且用户友好的预处理工具。为了弥补这一差距,我们开发了protomix -一个专门用于代谢组学研究的Python包。Protomix提供了一套自动化、高效、用户友好的信号预处理步骤,旨在简化和增强代谢组学研究中的预处理阶段。结果:该软件包提供了一个全面的预处理管道,兼容各种数据分析工具。它包含一套用于数据提取、预处理和交互式可视化的功能。此外,它还包括一个Python Jupyter笔记本形式的教程,专门用于分析与前列腺癌和良性前列腺增生相关的1D 1H-NMR代谢组学数据。可用性和实现:Protomix可以通过https://github.com/mzniber/protomix和https://protomix.readthedocs.io/en/latest/index.html访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信