Mohammed Ba-Aoum, Mohammed Alrezq, Jyotishka Datta, Konstantinos P Triantis
{"title":"Predicting student self-efficacy in Muslim societies using machine learning algorithms.","authors":"Mohammed Ba-Aoum, Mohammed Alrezq, Jyotishka Datta, Konstantinos P Triantis","doi":"10.3389/fdata.2024.1449572","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Self-efficacy is a critical determinant of students' academic success and overall life outcomes. Despite its recognized importance, research on predictors of self-efficacy using machine learning models remains limited, particularly within Muslim societies. This study addresses this gap by leveraging advanced machine learning techniques to analyze key factors influencing students' self-efficacy.</p><p><strong>Methods: </strong>An empirical dataset collected was used to examine self-efficacy among secondary school students in Muslim societies. Four machine learning algorithms-Decision Tree, Random Forest, XGBoost, and Neural Network-were employed to predict self-efficacy using two demographic variables and 10 socio-emotional, cognitive, and regulatory factors. The predictors included culturally relevant variables such as religious/spiritual beliefs and collectivist-individualist orientation. Model performance was assessed using root mean square error (RMSE) and r-squared (<i>R</i> <sup>2</sup>) metrics to ensure reliability and validity.</p><p><strong>Results: </strong>The results showed that Random Forest outperformed the other models in accuracy, as measured by <i>R</i> <sup>2</sup> and RMSE metrics. Among the predictors, self-regulation, problem-solving, and a sense of belonging emerged as the most significant factors, contributing to more than half of the model's predictive power. Other variables such as gratitude, forgiveness, empathy, and meaning-making displayed moderate predictive value, while gender, emotion regulation, and collectivist-individualist orientation had minimal impact. Notably, religious/spiritual beliefs and regional factors showed negligible influence on self-efficacy predictions.</p><p><strong>Discussion: </strong>This study enhances the understanding of factors influencing self-efficacy among students in Muslim societies and offers a data-driven foundation for developing targeted educational interventions. The findings highlight the utility of machine learning in education research, demonstrating its ability to uncover insights for equitable and effective decision-making. By emphasizing the importance of regulatory and socio-emotional factors, this research provides actionable insights to elevate student performance and well-being in diverse cultural contexts.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"7 ","pages":"1449572"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672345/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2024.1449572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Self-efficacy is a critical determinant of students' academic success and overall life outcomes. Despite its recognized importance, research on predictors of self-efficacy using machine learning models remains limited, particularly within Muslim societies. This study addresses this gap by leveraging advanced machine learning techniques to analyze key factors influencing students' self-efficacy.
Methods: An empirical dataset collected was used to examine self-efficacy among secondary school students in Muslim societies. Four machine learning algorithms-Decision Tree, Random Forest, XGBoost, and Neural Network-were employed to predict self-efficacy using two demographic variables and 10 socio-emotional, cognitive, and regulatory factors. The predictors included culturally relevant variables such as religious/spiritual beliefs and collectivist-individualist orientation. Model performance was assessed using root mean square error (RMSE) and r-squared (R2) metrics to ensure reliability and validity.
Results: The results showed that Random Forest outperformed the other models in accuracy, as measured by R2 and RMSE metrics. Among the predictors, self-regulation, problem-solving, and a sense of belonging emerged as the most significant factors, contributing to more than half of the model's predictive power. Other variables such as gratitude, forgiveness, empathy, and meaning-making displayed moderate predictive value, while gender, emotion regulation, and collectivist-individualist orientation had minimal impact. Notably, religious/spiritual beliefs and regional factors showed negligible influence on self-efficacy predictions.
Discussion: This study enhances the understanding of factors influencing self-efficacy among students in Muslim societies and offers a data-driven foundation for developing targeted educational interventions. The findings highlight the utility of machine learning in education research, demonstrating its ability to uncover insights for equitable and effective decision-making. By emphasizing the importance of regulatory and socio-emotional factors, this research provides actionable insights to elevate student performance and well-being in diverse cultural contexts.