pyBioPortal: a Python package for simplifying cBioPortal data access in cancer research.

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES
JAMIA Open Pub Date : 2024-12-26 eCollection Date: 2025-02-01 DOI:10.1093/jamiaopen/ooae146
Matteo Valerio, Alessandro Inno, Stefania Gori
{"title":"<i>pyBioPortal</i>: a Python package for simplifying cBioPortal data access in cancer research.","authors":"Matteo Valerio, Alessandro Inno, Stefania Gori","doi":"10.1093/jamiaopen/ooae146","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>In recent years, the rise of big data and artificial intelligence has led to an increasing expansion of databases and web services in biomedical research. cBioPortal is one of the most widely used platforms for accessing cancer genomic and clinical data. The primary objective of this study was to develop a tool that simplifies programmatic interaction with cBioPortal's web service.</p><p><strong>Materials and methods: </strong>We developed the <i>pyBioPortal</i> Python package, which leverages the cBioPortal REST API to access genomic and clinical data. The retrieved data is returned as a Pandas DataFrame, a format widely used for data analysis in Python.</p><p><strong>Results: </strong><i>pyBioPortal</i> offers an efficient interface between the user and the cBioPortal database. The data is provided in formats conducive to further analysis and visualization, promoting workflows and improving reproducibility.</p><p><strong>Discussion: </strong>The development of <i>pyBioPortal</i> addresses the challenge of accessing and processing large volumes of biomedical data. By simplifying the interaction with the cBioPortal API and providing data in Pandas DataFrame format, <i>pyBioPortal</i> allows users to focus more on the analytical aspects rather than data extraction.</p><p><strong>Conclusion: </strong>This tool facilitates the retrieval of heterogeneous biological and clinical data in a standardized format, making it more accessible for analysis and enhancing the reproducibility of results in cancer informatics. Distributed as an open-source project, <i>pyBioPortal</i> is available to the broader bioinformatics community, promoting collaboration and advancing research in cancer genomics.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"8 1","pages":"ooae146"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671144/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooae146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: In recent years, the rise of big data and artificial intelligence has led to an increasing expansion of databases and web services in biomedical research. cBioPortal is one of the most widely used platforms for accessing cancer genomic and clinical data. The primary objective of this study was to develop a tool that simplifies programmatic interaction with cBioPortal's web service.

Materials and methods: We developed the pyBioPortal Python package, which leverages the cBioPortal REST API to access genomic and clinical data. The retrieved data is returned as a Pandas DataFrame, a format widely used for data analysis in Python.

Results: pyBioPortal offers an efficient interface between the user and the cBioPortal database. The data is provided in formats conducive to further analysis and visualization, promoting workflows and improving reproducibility.

Discussion: The development of pyBioPortal addresses the challenge of accessing and processing large volumes of biomedical data. By simplifying the interaction with the cBioPortal API and providing data in Pandas DataFrame format, pyBioPortal allows users to focus more on the analytical aspects rather than data extraction.

Conclusion: This tool facilitates the retrieval of heterogeneous biological and clinical data in a standardized format, making it more accessible for analysis and enhancing the reproducibility of results in cancer informatics. Distributed as an open-source project, pyBioPortal is available to the broader bioinformatics community, promoting collaboration and advancing research in cancer genomics.

pybiopportal:一个Python包,用于简化癌症研究中的pybiopportal数据访问。
近年来,随着大数据和人工智能的兴起,生物医学研究领域的数据库和web服务日益扩大。cbiopportal是使用最广泛的获取癌症基因组和临床数据的平台之一。本研究的主要目标是开发一种工具,简化与cbiopportal web服务的程序化交互。材料和方法:我们开发了pyBioPortal Python包,它利用cBioPortal REST API来访问基因组和临床数据。检索到的数据作为Pandas DataFrame返回,这是一种在Python中广泛用于数据分析的格式。结果:pybiopportal提供了一个用户和cbiopportal数据库之间的有效接口。数据以有利于进一步分析和可视化、促进工作流程和提高再现性的格式提供。讨论:pybiopportal的开发解决了访问和处理大量生物医学数据的挑战。通过简化与pybiopportal API的交互并以Pandas DataFrame格式提供数据,pybiopportal允许用户更多地关注分析方面,而不是数据提取。结论:该工具有助于以标准化格式检索异构生物学和临床数据,使其更易于分析,并提高癌症信息学结果的可重复性。作为一个开源项目,pybiopportal向更广泛的生物信息学社区开放,促进癌症基因组学的合作和研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信