Fangcheng Li , Xiangbing Cheng , Xumeng He, Gilbert Kumilamba, Jiayi Liao, Jiangwei Cao, Qigen Liu, Jiamin Sun
{"title":"Molecular responses of paddy field carp (Cyprinus carpio) in the agricultural heritage to major environmental factors in paddy fields","authors":"Fangcheng Li , Xiangbing Cheng , Xumeng He, Gilbert Kumilamba, Jiayi Liao, Jiangwei Cao, Qigen Liu, Jiamin Sun","doi":"10.1016/j.cbd.2024.101410","DOIUrl":null,"url":null,"abstract":"<div><div>As a core element of the Globally Important Agricultural Heritage System (GIAHS), the Qingtian paddy field carp (<em>Cyprinus carpio</em>, PF-carp) has been domesticated for over 1200 years in paddy field environments. This species has successfully adapted to shallow-water conditions in paddy fields. To reveal the adaptation mechanism, we conducted transcriptome sequencing on the hepatopancreas of PF-carp under two temperature conditions (28 °C and 38 °C) and concurrently analysed RNA-seq data from hypoxic conditions in the same tissue. By analysing high-temperature transcriptome data, 3154 differentially expressed genes (DEGs) were identified. KEGG analysis indicated that DEGs involved various pathways, including protein processing in endoplasmic reticulum, circadian rhythm, and HIF-1 signaling pathway. Notably, protein processing in endoplasmic reticulum was significantly enriched with key genes such as HSP70, HSP90, HSP40, CNX, CRT, and Bip. Through concurrent analysis of RNA-seq data from hypoxic conditions, we found that PF-carp regulate their metabolism through multiple pathways and produce almost opposite metabolic regulation to adapt to high temperature and hypoxic environments. The opposite activation state observed in the HIF-1 signaling pathway is particularly intriguing. In conclusion, PF-carp appear to rely on protein processing in endoplasmic reticulum to maintain cell homeostasis at high temperatures. The HIF-1 signaling pathway may emerged as a key player in adapting PF-carps to paddy fields. This study provides valuable insights into the adaptive mechanisms of domesticated fish in paddy fields.</div></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":"54 ","pages":"Article 101410"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X24002235","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As a core element of the Globally Important Agricultural Heritage System (GIAHS), the Qingtian paddy field carp (Cyprinus carpio, PF-carp) has been domesticated for over 1200 years in paddy field environments. This species has successfully adapted to shallow-water conditions in paddy fields. To reveal the adaptation mechanism, we conducted transcriptome sequencing on the hepatopancreas of PF-carp under two temperature conditions (28 °C and 38 °C) and concurrently analysed RNA-seq data from hypoxic conditions in the same tissue. By analysing high-temperature transcriptome data, 3154 differentially expressed genes (DEGs) were identified. KEGG analysis indicated that DEGs involved various pathways, including protein processing in endoplasmic reticulum, circadian rhythm, and HIF-1 signaling pathway. Notably, protein processing in endoplasmic reticulum was significantly enriched with key genes such as HSP70, HSP90, HSP40, CNX, CRT, and Bip. Through concurrent analysis of RNA-seq data from hypoxic conditions, we found that PF-carp regulate their metabolism through multiple pathways and produce almost opposite metabolic regulation to adapt to high temperature and hypoxic environments. The opposite activation state observed in the HIF-1 signaling pathway is particularly intriguing. In conclusion, PF-carp appear to rely on protein processing in endoplasmic reticulum to maintain cell homeostasis at high temperatures. The HIF-1 signaling pathway may emerged as a key player in adapting PF-carps to paddy fields. This study provides valuable insights into the adaptive mechanisms of domesticated fish in paddy fields.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.