Improving process robustness of cation exchange chromatography with cationic buffers for the reduction of aggregates.

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Shuo Wang, Shuaihua Wang, Dijing Shi, Ruomei Lv
{"title":"Improving process robustness of cation exchange chromatography with cationic buffers for the reduction of aggregates.","authors":"Shuo Wang, Shuaihua Wang, Dijing Shi, Ruomei Lv","doi":"10.1016/j.pep.2024.106657","DOIUrl":null,"url":null,"abstract":"<p><p>Cation exchange chromatography (CEX) is commonly used to separate aggregates from monomers during the industrial manufacturing of recombinant proteins. However, the similar isoelectric point of aggregates and monomers makes the stepwise elution CEX an unstable process. In this study, the performance robustness of sodium chloride stepwise elution and cationic buffers (histidine and Bis-Tris) stepwise elution were compared through Monte Carlo simulation. While all trials achieved acceptable levels of monomer purity, sodium chloride stepwise elution exhibited significant fluctuations in yield and elution volume due to variations in elution pH and eluent concentration. In contrast, histidine or Bis-Tris stepwise elution resulted in more consistent yield and elution volume across a broad operating range. The findings indicate that the dissociation behavior of cationic buffers mitigates the impact of pH variation on ion-exchange equilibrium and thus enables a more robust CEX process.</p>","PeriodicalId":20757,"journal":{"name":"Protein expression and purification","volume":" ","pages":"106657"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein expression and purification","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pep.2024.106657","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Cation exchange chromatography (CEX) is commonly used to separate aggregates from monomers during the industrial manufacturing of recombinant proteins. However, the similar isoelectric point of aggregates and monomers makes the stepwise elution CEX an unstable process. In this study, the performance robustness of sodium chloride stepwise elution and cationic buffers (histidine and Bis-Tris) stepwise elution were compared through Monte Carlo simulation. While all trials achieved acceptable levels of monomer purity, sodium chloride stepwise elution exhibited significant fluctuations in yield and elution volume due to variations in elution pH and eluent concentration. In contrast, histidine or Bis-Tris stepwise elution resulted in more consistent yield and elution volume across a broad operating range. The findings indicate that the dissociation behavior of cationic buffers mitigates the impact of pH variation on ion-exchange equilibrium and thus enables a more robust CEX process.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Protein expression and purification
Protein expression and purification 生物-生化研究方法
CiteScore
3.70
自引率
6.20%
发文量
120
审稿时长
32 days
期刊介绍: Protein Expression and Purification is an international journal providing a forum for the dissemination of new information on protein expression, extraction, purification, characterization, and/or applications using conventional biochemical and/or modern molecular biological approaches and methods, which are of broad interest to the field. The journal does not typically publish repetitive examples of protein expression and purification involving standard, well-established, methods. However, exceptions might include studies on important and/or difficult to express and/or purify proteins and/or studies that include extensive protein characterization, which provide new, previously unpublished information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信