{"title":"RNF5 exacerbates steatotic HCC by enhancing fatty acid oxidation via the improvement of CPT1A stability.","authors":"Xi Chen, Yang-Wen-Qing Zhang, Hui Ren, Caixia Dai, Minghe Zhang, Xiaomian Li, Kequan Xu, Jinghua Li, Yi Ju, Xiaoyu Pan, Peng Xia, Weijie Ma, Wenzhi He, Tiangen Wu, Yufeng Yuan","doi":"10.1016/j.canlet.2024.217415","DOIUrl":null,"url":null,"abstract":"<p><p>Non-alcoholic fatty liver disease (NAFLD) is expected to become the leading risk factor for liver cancer, surpassing viral hepatitis. Unlike viral hepatitis-related hepatocellular carcinoma (HCC), the role of excessive nutrient supply in steatotic HCC is not well understood, hindering effective prevention and treatment strategies. Therefore, it is crucial to identify key molecules in the pathogenesis of steatotic HCC, investigate changes in metabolic reprogramming due to excessive fatty acid (FA) supply, understand its molecular mechanisms, and find potential therapeutic targets. Trans-species transcriptome analysis identified Ring Finger Protein 5 (RNF5) as a critical regulator of steatotic HCC. RNF5 upregulation is associated with poor prognosis in steatotic HCC compared to canonical HCC. In vitro and in vivo studies showed that RNF5 exacerbates HCC in the presence of additional FA supply. Lipidomics and transcriptome analyses revealed that RNF5 significantly increases carnitine palmitoyltransferase 1A (CPT1A) mRNA levels and is positively correlated with fatty acid oxidation (FAO). Protein interaction analysis demonstrated that RNF5 promotes K63-type ubiquitination of insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1), enhancing CPT1A mRNA stabilization through m6A modification. Additionally, peroxisome proliferator-activated receptor gamma (PPARγ) was found to activate RNF5 expression specifically in HCC cells. Mechanistically, excessive exogenous FAs reorganize FA metabolism in HCC cells, worsening steatotic HCC via the PPARγ-RNF5-IGF2BP1-CPT1A axis. This study highlights a distinct FA metabolism pattern in steatotic HCC, providing valuable insights for potential therapeutic targets.</p>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":" ","pages":"217415"},"PeriodicalIF":9.1000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.canlet.2024.217415","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Non-alcoholic fatty liver disease (NAFLD) is expected to become the leading risk factor for liver cancer, surpassing viral hepatitis. Unlike viral hepatitis-related hepatocellular carcinoma (HCC), the role of excessive nutrient supply in steatotic HCC is not well understood, hindering effective prevention and treatment strategies. Therefore, it is crucial to identify key molecules in the pathogenesis of steatotic HCC, investigate changes in metabolic reprogramming due to excessive fatty acid (FA) supply, understand its molecular mechanisms, and find potential therapeutic targets. Trans-species transcriptome analysis identified Ring Finger Protein 5 (RNF5) as a critical regulator of steatotic HCC. RNF5 upregulation is associated with poor prognosis in steatotic HCC compared to canonical HCC. In vitro and in vivo studies showed that RNF5 exacerbates HCC in the presence of additional FA supply. Lipidomics and transcriptome analyses revealed that RNF5 significantly increases carnitine palmitoyltransferase 1A (CPT1A) mRNA levels and is positively correlated with fatty acid oxidation (FAO). Protein interaction analysis demonstrated that RNF5 promotes K63-type ubiquitination of insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1), enhancing CPT1A mRNA stabilization through m6A modification. Additionally, peroxisome proliferator-activated receptor gamma (PPARγ) was found to activate RNF5 expression specifically in HCC cells. Mechanistically, excessive exogenous FAs reorganize FA metabolism in HCC cells, worsening steatotic HCC via the PPARγ-RNF5-IGF2BP1-CPT1A axis. This study highlights a distinct FA metabolism pattern in steatotic HCC, providing valuable insights for potential therapeutic targets.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.