Cristina Castanyer, Çetin Çelik, Albert Artigas, Anna Roglans, Anna Pla Quintana, Anton J Stasyuk, Yoko Yamakoshi, Miquel Solà
{"title":"Enhancement of photoinduced reactive oxygen species generation in open-cage fullerenes","authors":"Cristina Castanyer, Çetin Çelik, Albert Artigas, Anna Roglans, Anna Pla Quintana, Anton J Stasyuk, Yoko Yamakoshi, Miquel Solà","doi":"10.1039/d4sc05428h","DOIUrl":null,"url":null,"abstract":"Photodynamic therapy is an important tool in modern medicine due to its effectiveness, safety, and the ability to provide targeted treatment for a range of diseases. Photodynamic therapy utilizes photosensitizers to generate reactive oxygen species (ROS). Fullerenes can be used as photosensitizers to produce ROS in high quantum yields. Open-cage fullerenes are a subclass of fullerenes characterized by a partially open structure, with one or more openings or apertures. The promising electrochemical properties of open-cage fullerenes motivated us to investigate their use for DNA-cleavage and ROS generation under visible light irradiation through type I electron transfer and type II energy transfer reactions. Our results show that open-cage C60 fullerenes are more efficient for photoinduced cleavage of DNA and ROS generation via both the type I electron transfer and type II energy transfer pathways than pristine C60 or a C60 pyrrolidine derivative without open-cage. The greater efficiency of ROS generation by open-cage C60 fullerene in type I and type II reactions can be attributed to the increased rate of the initial intersystem crossing (ISC) process, resulting from larger total reorganization energies, as indicated by computationally calculated relative rates using Marcus equation, and the lower reduction potential of the open-cage derivative 3, as determined by CV, which facilitates a more efficient generation of the corresponding radical anion (C60•-).","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"57 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc05428h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photodynamic therapy is an important tool in modern medicine due to its effectiveness, safety, and the ability to provide targeted treatment for a range of diseases. Photodynamic therapy utilizes photosensitizers to generate reactive oxygen species (ROS). Fullerenes can be used as photosensitizers to produce ROS in high quantum yields. Open-cage fullerenes are a subclass of fullerenes characterized by a partially open structure, with one or more openings or apertures. The promising electrochemical properties of open-cage fullerenes motivated us to investigate their use for DNA-cleavage and ROS generation under visible light irradiation through type I electron transfer and type II energy transfer reactions. Our results show that open-cage C60 fullerenes are more efficient for photoinduced cleavage of DNA and ROS generation via both the type I electron transfer and type II energy transfer pathways than pristine C60 or a C60 pyrrolidine derivative without open-cage. The greater efficiency of ROS generation by open-cage C60 fullerene in type I and type II reactions can be attributed to the increased rate of the initial intersystem crossing (ISC) process, resulting from larger total reorganization energies, as indicated by computationally calculated relative rates using Marcus equation, and the lower reduction potential of the open-cage derivative 3, as determined by CV, which facilitates a more efficient generation of the corresponding radical anion (C60•-).
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.