Enhancement of photoinduced reactive oxygen species generation in open-cage fullerenes

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Cristina Castanyer, Çetin Çelik, Albert Artigas, Anna Roglans, Anna Pla Quintana, Anton J Stasyuk, Yoko Yamakoshi, Miquel Solà
{"title":"Enhancement of photoinduced reactive oxygen species generation in open-cage fullerenes","authors":"Cristina Castanyer, Çetin Çelik, Albert Artigas, Anna Roglans, Anna Pla Quintana, Anton J Stasyuk, Yoko Yamakoshi, Miquel Solà","doi":"10.1039/d4sc05428h","DOIUrl":null,"url":null,"abstract":"Photodynamic therapy is an important tool in modern medicine due to its effectiveness, safety, and the ability to provide targeted treatment for a range of diseases. Photodynamic therapy utilizes photosensitizers to generate reactive oxygen species (ROS). Fullerenes can be used as photosensitizers to produce ROS in high quantum yields. Open-cage fullerenes are a subclass of fullerenes characterized by a partially open structure, with one or more openings or apertures. The promising electrochemical properties of open-cage fullerenes motivated us to investigate their use for DNA-cleavage and ROS generation under visible light irradiation through type I electron transfer and type II energy transfer reactions. Our results show that open-cage C60 fullerenes are more efficient for photoinduced cleavage of DNA and ROS generation via both the type I electron transfer and type II energy transfer pathways than pristine C60 or a C60 pyrrolidine derivative without open-cage. The greater efficiency of ROS generation by open-cage C60 fullerene in type I and type II reactions can be attributed to the increased rate of the initial intersystem crossing (ISC) process, resulting from larger total reorganization energies, as indicated by computationally calculated relative rates using Marcus equation, and the lower reduction potential of the open-cage derivative 3, as determined by CV, which facilitates a more efficient generation of the corresponding radical anion (C60•-).","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"57 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc05428h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photodynamic therapy is an important tool in modern medicine due to its effectiveness, safety, and the ability to provide targeted treatment for a range of diseases. Photodynamic therapy utilizes photosensitizers to generate reactive oxygen species (ROS). Fullerenes can be used as photosensitizers to produce ROS in high quantum yields. Open-cage fullerenes are a subclass of fullerenes characterized by a partially open structure, with one or more openings or apertures. The promising electrochemical properties of open-cage fullerenes motivated us to investigate their use for DNA-cleavage and ROS generation under visible light irradiation through type I electron transfer and type II energy transfer reactions. Our results show that open-cage C60 fullerenes are more efficient for photoinduced cleavage of DNA and ROS generation via both the type I electron transfer and type II energy transfer pathways than pristine C60 or a C60 pyrrolidine derivative without open-cage. The greater efficiency of ROS generation by open-cage C60 fullerene in type I and type II reactions can be attributed to the increased rate of the initial intersystem crossing (ISC) process, resulting from larger total reorganization energies, as indicated by computationally calculated relative rates using Marcus equation, and the lower reduction potential of the open-cage derivative 3, as determined by CV, which facilitates a more efficient generation of the corresponding radical anion (C60•-).
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信