{"title":"Electrical discharge-mechanical hybrid drilling of micro-holes in carbon fibre-reinforced polymers","authors":"Yijin Zhao, Xiaodong Yang, Yong Lu, Xiaoming Duan","doi":"10.1016/j.ijmachtools.2024.104243","DOIUrl":null,"url":null,"abstract":"<div><div>The machining of deep micro-holes in carbon fibre-reinforced polymers (CFRP) components exhibits a significantly increased demand in the industry. However, it is difficult to machine CFRP deep micro-holes using conventional mechanical drilling and non-conventional processes individually because of the anisotropic and inhomogeneous characteristics of CFRP. To address this problem, an electrical discharge-mechanical hybrid drilling method was proposed in this study. In this method, a specialized servo control strategy was employed to effectively utilize the electrical discharge machining and mechanical drilling, based on the distinct difference in electrical conductivity between the carbon fibre and the resin in CFRP. This effectively resolved the challenges posed by the high hardness of the carbon fibre for mechanical drilling and the non-conductivity of the resin for EDM, taking advantage of both EDM and mechanical drilling. High-speed photography, processing debris analysis, discharge state monitoring, and finite element simulation were performed to investigate the machining process and material removal mechanism of electrical discharge-mechanical hybrid drilling. The results showed that most of the carbon fibre and resin were individually removed by EDM and mechanical drilling, respectively. However, in the interfacial region between the carbon fibre and resin, both mechanical drilling and EDM occur simultaneously. The heat generated during the EDM of carbon fibre also leads to the thermal decomposition and vaporization of the resin in proximity to the carbon fibre. Furthermore, deep micro-holes machining with a diameter of 330 μm and a depth-to-diameter ratio of 15.1 was performed on CFRP component to validate the advantages of the proposed hybrid drilling method. Compared with EDM, the proposed hybrid drilling method exhibited a 29.1 % increase in efficiency, 56.25 % reduction in taper, and 54.32 % reduction in the heat-affected zone. These outcomes demonstrate that the electrical discharge-mechanical hybrid drilling holds great potential for machining high-quality micro-holes on advanced multilayer composites with anisotropic and inhomogeneous properties.</div></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"205 ","pages":"Article 104243"},"PeriodicalIF":14.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695524001299","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The machining of deep micro-holes in carbon fibre-reinforced polymers (CFRP) components exhibits a significantly increased demand in the industry. However, it is difficult to machine CFRP deep micro-holes using conventional mechanical drilling and non-conventional processes individually because of the anisotropic and inhomogeneous characteristics of CFRP. To address this problem, an electrical discharge-mechanical hybrid drilling method was proposed in this study. In this method, a specialized servo control strategy was employed to effectively utilize the electrical discharge machining and mechanical drilling, based on the distinct difference in electrical conductivity between the carbon fibre and the resin in CFRP. This effectively resolved the challenges posed by the high hardness of the carbon fibre for mechanical drilling and the non-conductivity of the resin for EDM, taking advantage of both EDM and mechanical drilling. High-speed photography, processing debris analysis, discharge state monitoring, and finite element simulation were performed to investigate the machining process and material removal mechanism of electrical discharge-mechanical hybrid drilling. The results showed that most of the carbon fibre and resin were individually removed by EDM and mechanical drilling, respectively. However, in the interfacial region between the carbon fibre and resin, both mechanical drilling and EDM occur simultaneously. The heat generated during the EDM of carbon fibre also leads to the thermal decomposition and vaporization of the resin in proximity to the carbon fibre. Furthermore, deep micro-holes machining with a diameter of 330 μm and a depth-to-diameter ratio of 15.1 was performed on CFRP component to validate the advantages of the proposed hybrid drilling method. Compared with EDM, the proposed hybrid drilling method exhibited a 29.1 % increase in efficiency, 56.25 % reduction in taper, and 54.32 % reduction in the heat-affected zone. These outcomes demonstrate that the electrical discharge-mechanical hybrid drilling holds great potential for machining high-quality micro-holes on advanced multilayer composites with anisotropic and inhomogeneous properties.
期刊介绍:
The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics:
- Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms.
- Significant scientific advancements in existing or new processes and machines.
- In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes.
- Tool design, utilization, and comprehensive studies of failure mechanisms.
- Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope.
- Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes.
- Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools").
- Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).