{"title":"vmrseq: probabilistic modeling of single-cell methylation heterogeneity","authors":"Ning Shen, Keegan Korthauer","doi":"10.1186/s13059-024-03457-7","DOIUrl":null,"url":null,"abstract":"Single-cell DNA methylation measurements reveal genome-scale inter-cellular epigenetic heterogeneity, but extreme sparsity and noise challenges rigorous analysis. Previous methods to detect variably methylated regions (VMRs) have relied on predefined regions or sliding windows and report regions insensitive to heterogeneity level present in input. We present vmrseq, a statistical method that overcomes these challenges to detect VMRs with increased accuracy in synthetic benchmarks and improved feature selection in case studies. vmrseq also highlights context-dependent correlations between methylation and gene expression, supporting previous findings and facilitating novel hypotheses on epigenetic regulation. vmrseq is available at https://github.com/nshen7/vmrseq .","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"5 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03457-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-cell DNA methylation measurements reveal genome-scale inter-cellular epigenetic heterogeneity, but extreme sparsity and noise challenges rigorous analysis. Previous methods to detect variably methylated regions (VMRs) have relied on predefined regions or sliding windows and report regions insensitive to heterogeneity level present in input. We present vmrseq, a statistical method that overcomes these challenges to detect VMRs with increased accuracy in synthetic benchmarks and improved feature selection in case studies. vmrseq also highlights context-dependent correlations between methylation and gene expression, supporting previous findings and facilitating novel hypotheses on epigenetic regulation. vmrseq is available at https://github.com/nshen7/vmrseq .
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.