{"title":"Predictions to Increase Lasso Peptide Production in the Heterologous Host Streptomyces coelicolor M1152","authors":"Valeria Razmilic, Juan A. Asenjo, Irene Martínez","doi":"10.1002/bit.28917","DOIUrl":null,"url":null,"abstract":"Production of specialized metabolites are restricted to the metabolic capabilities of the organisms. Genome‐scale models (GEM)s are useful to study the whole metabolism and to find metabolic engineering targets to increase the yield of a target compound. In this work we use a modified model of <jats:italic>Streptomyces coelicolor</jats:italic> M145 to simulate the production of lagmysin A (LP4) and the novel lagmysin B (LP2) lasso peptide, in the heterologous host <jats:italic>Streptomyces coelicolor</jats:italic> M1152. Overexpression targets were identified using the flux scanning based on enforced objective flux (FSEOF) algorithm and flux variability analysis (FVA), considering growth in minimum and in complex medium. Thirteen reactions were found as candidate metabolic engineering targets for both lasso peptides considering both settings. We propose the overexpression of enzymes of the glycolysis pathway (GAPD, PGK, PGM and ENO) and leucine biosynthesis (IPPS, IPPMIb, IPPMIa, IPMD and OMCDC) to enhance the production of either lagmysin A or B.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"327 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28917","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Production of specialized metabolites are restricted to the metabolic capabilities of the organisms. Genome‐scale models (GEM)s are useful to study the whole metabolism and to find metabolic engineering targets to increase the yield of a target compound. In this work we use a modified model of Streptomyces coelicolor M145 to simulate the production of lagmysin A (LP4) and the novel lagmysin B (LP2) lasso peptide, in the heterologous host Streptomyces coelicolor M1152. Overexpression targets were identified using the flux scanning based on enforced objective flux (FSEOF) algorithm and flux variability analysis (FVA), considering growth in minimum and in complex medium. Thirteen reactions were found as candidate metabolic engineering targets for both lasso peptides considering both settings. We propose the overexpression of enzymes of the glycolysis pathway (GAPD, PGK, PGM and ENO) and leucine biosynthesis (IPPS, IPPMIb, IPPMIa, IPMD and OMCDC) to enhance the production of either lagmysin A or B.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.