{"title":"Consistent generalized finite element method: An accurate and robust mesh-based method even in distorted meshes","authors":"Jinwei Ma , Qinglin Duan , Rong Tian , Siqi Shu","doi":"10.1016/j.enganabound.2024.106084","DOIUrl":null,"url":null,"abstract":"<div><div>A consistent generalized finite element method (C-GFEM) is proposed, showing excellent accuracy and convergence in distorted quadrilateral and hexahedral meshes. Both displacement approximation and domain integration are taken into consideration regarding the declining performance of the finite element method (FEM) in distorted meshes. In the displacement approximation, extra-degrees of freedom-free and linearly independent enrichments developed in GFEM are employed, which restores the reproducibility of the approximation in distorted meshes. In the domain integration, the idea of correcting nodal derivatives in the framework of the <em>Hu–Washizu</em> three-field variational principle is introduced into GFEM, based on which consistent integration schemes using quadrilateral and hexahedral elements are developed in this work. Furthermore, to consistently enforce the essential boundary condition, additional terms of boundary integral are introduced into the weak form. As a result, the proposed C-GFEM can pass patch tests and keep high accuracy even though the computational mesh is distorted. Its perfect performance in distorted meshes is sufficiently demonstrated by the numerical investigation of several benchmark examples.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"171 ","pages":"Article 106084"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724005575","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A consistent generalized finite element method (C-GFEM) is proposed, showing excellent accuracy and convergence in distorted quadrilateral and hexahedral meshes. Both displacement approximation and domain integration are taken into consideration regarding the declining performance of the finite element method (FEM) in distorted meshes. In the displacement approximation, extra-degrees of freedom-free and linearly independent enrichments developed in GFEM are employed, which restores the reproducibility of the approximation in distorted meshes. In the domain integration, the idea of correcting nodal derivatives in the framework of the Hu–Washizu three-field variational principle is introduced into GFEM, based on which consistent integration schemes using quadrilateral and hexahedral elements are developed in this work. Furthermore, to consistently enforce the essential boundary condition, additional terms of boundary integral are introduced into the weak form. As a result, the proposed C-GFEM can pass patch tests and keep high accuracy even though the computational mesh is distorted. Its perfect performance in distorted meshes is sufficiently demonstrated by the numerical investigation of several benchmark examples.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.