Approaching coupled-cluster accuracy for molecular electronic structures with multi-task learning.

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hao Tang, Brian Xiao, Wenhao He, Pero Subasic, Avetik R Harutyunyan, Yao Wang, Fang Liu, Haowei Xu, Ju Li
{"title":"Approaching coupled-cluster accuracy for molecular electronic structures with multi-task learning.","authors":"Hao Tang, Brian Xiao, Wenhao He, Pero Subasic, Avetik R Harutyunyan, Yao Wang, Fang Liu, Haowei Xu, Ju Li","doi":"10.1038/s43588-024-00747-9","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning plays an important role in quantum chemistry, providing fast-to-evaluate predictive models for various properties of molecules; however, most existing machine learning models for molecular electronic properties use density functional theory (DFT) databases as ground truth in training, and their prediction accuracy cannot surpass that of DFT. In this work we developed a unified machine learning method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data. Tested on hydrocarbon molecules, our model outperforms DFT with several widely used hybrid and double-hybrid functionals in terms of both computational cost and prediction accuracy of various quantum chemical properties. We apply the model to aromatic compounds and semiconducting polymers, evaluating both ground- and excited-state properties. The results demonstrate the model's accuracy and generalization capability to complex systems that cannot be calculated using CCSD(T)-level methods due to scaling.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-024-00747-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning plays an important role in quantum chemistry, providing fast-to-evaluate predictive models for various properties of molecules; however, most existing machine learning models for molecular electronic properties use density functional theory (DFT) databases as ground truth in training, and their prediction accuracy cannot surpass that of DFT. In this work we developed a unified machine learning method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data. Tested on hydrocarbon molecules, our model outperforms DFT with several widely used hybrid and double-hybrid functionals in terms of both computational cost and prediction accuracy of various quantum chemical properties. We apply the model to aromatic compounds and semiconducting polymers, evaluating both ground- and excited-state properties. The results demonstrate the model's accuracy and generalization capability to complex systems that cannot be calculated using CCSD(T)-level methods due to scaling.

基于多任务学习的分子电子结构耦合聚类精度逼近。
机器学习在量子化学中发挥着重要作用,为分子的各种性质提供了快速评估的预测模型;然而,大多数现有的分子电子特性机器学习模型在训练中使用密度泛函理论(DFT)数据库作为基础真值,其预测精度无法超过DFT。在这项工作中,我们开发了一种统一的有机分子电子结构的机器学习方法,使用金标准CCSD(T)计算作为训练数据。在碳氢化合物分子上进行的测试表明,我们的模型在计算成本和各种量子化学性质的预测精度方面都优于具有几种广泛使用的杂化和双杂化泛函的DFT。我们将该模型应用于芳香族化合物和半导体聚合物,评估基态和激发态性质。结果表明,该模型具有较好的精度和泛化能力,可以应用于CCSD(T)级方法无法计算的复杂系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信