A hitchhiker's guide to deep chemical language processing for bioactivity prediction.

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rıza Özçelik, Francesca Grisoni
{"title":"A hitchhiker's guide to deep chemical language processing for bioactivity prediction.","authors":"Rıza Özçelik, Francesca Grisoni","doi":"10.1039/d4dd00311j","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning has significantly accelerated drug discovery, with 'chemical language' processing (CLP) emerging as a prominent approach. CLP approaches learn from molecular string representations (<i>e.g.</i>, Simplified Molecular Input Line Entry Systems [SMILES] and Self-Referencing Embedded Strings [SELFIES]) with methods akin to natural language processing. Despite their growing importance, training predictive CLP models is far from trivial, as it involves many 'bells and whistles'. Here, we analyze the key elements of CLP and provide guidelines for newcomers and experts. Our study spans three neural network architectures, two string representations, three embedding strategies, across ten bioactivity datasets, for both classification and regression purposes. This 'hitchhiker's guide' not only underscores the importance of certain methodological decisions, but it also equips researchers with practical recommendations on ideal choices, <i>e.g.</i>, in terms of neural network architectures, molecular representations, and hyperparameter optimization.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667676/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4dd00311j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning has significantly accelerated drug discovery, with 'chemical language' processing (CLP) emerging as a prominent approach. CLP approaches learn from molecular string representations (e.g., Simplified Molecular Input Line Entry Systems [SMILES] and Self-Referencing Embedded Strings [SELFIES]) with methods akin to natural language processing. Despite their growing importance, training predictive CLP models is far from trivial, as it involves many 'bells and whistles'. Here, we analyze the key elements of CLP and provide guidelines for newcomers and experts. Our study spans three neural network architectures, two string representations, three embedding strategies, across ten bioactivity datasets, for both classification and regression purposes. This 'hitchhiker's guide' not only underscores the importance of certain methodological decisions, but it also equips researchers with practical recommendations on ideal choices, e.g., in terms of neural network architectures, molecular representations, and hyperparameter optimization.

一本用于生物活性预测的深层化学语言处理的搭便车指南。
深度学习极大地加速了药物的发现,“化学语言”处理(CLP)正在成为一种突出的方法。CLP方法从分子字符串表示(例如,简化分子输入行输入系统[SMILES]和自引用嵌入字符串[selfie])中学习,方法类似于自然语言处理。尽管它们越来越重要,但训练预测CLP模型远非微不足道,因为它涉及许多“铃铛和口哨”。在这里,我们分析了CLP的关键要素,并为新手和专家提供了指导。我们的研究跨越了三种神经网络架构,两种字符串表示,三种嵌入策略,跨越了十个生物活性数据集,用于分类和回归目的。这本“搭便车指南”不仅强调了某些方法决策的重要性,而且还为研究人员提供了关于理想选择的实用建议,例如,在神经网络架构,分子表示和超参数优化方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信