Epigallocatechin-3-gallate therapeutic potential in human diseases: molecular mechanisms and clinical studies.

IF 6.3 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Manzar Alam, Mehak Gulzar, Mohammad Salman Akhtar, Summya Rashid, Zulfareen, Tanuja, Anas Shamsi, Md Imtaiyaz Hassan
{"title":"Epigallocatechin-3-gallate therapeutic potential in human diseases: molecular mechanisms and clinical studies.","authors":"Manzar Alam, Mehak Gulzar, Mohammad Salman Akhtar, Summya Rashid, Zulfareen, Tanuja, Anas Shamsi, Md Imtaiyaz Hassan","doi":"10.1186/s43556-024-00240-9","DOIUrl":null,"url":null,"abstract":"<p><p>Green tea has garnered increasing attention across age groups due to its numerous health benefits, largely attributed to Epigallocatechin 3-gallate (EGCG), its key polyphenol. EGCG exhibits a wide spectrum of biological activities, including antioxidant, anti-inflammatory, antibacterial, anticancer, and neuroprotective properties, as well as benefits for cardiovascular and oral health. This review provides a comprehensive overview of recent findings on the therapeutic potential of EGCG in various human diseases. Neuroprotective effects of EGCG include safeguarding neurons from damage and enhancing cognitive function, primarily through its antioxidant capacity to reduce reactive oxygen species (ROS) generated during physiological stress. Additionally, EGCG modulates key signaling pathways such as JAK/STAT, Delta-Notch, and TNF, all of which play critical roles in neuronal survival, growth, and function. Furthermore, EGCG is involved in regulating apoptosis and cell cycle progression, making it a promising candidate for the treatment of metabolic diseases, including cancer and diabetes. Despite its promising therapeutic potential, further clinical trials are essential to validate the efficacy and safety of EGCG and to optimize its delivery to target tissues. While many reviews have addressed the anticancer properties of EGCG, this review focuses on the molecular mechanisms and signaling pathways by which EGCG used in specific human diseases, particularly cancer, neurodegenerative and metabolic diseases. It serves as a valuable resource for researchers, clinicians, and healthcare professionals, revealing the potential of EGCG in managing neurodegenerative disorders, cancer, and metabolic diseases and highlighting its broader therapeutic values.</p>","PeriodicalId":74218,"journal":{"name":"Molecular biomedicine","volume":"5 1","pages":"73"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671467/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43556-024-00240-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Green tea has garnered increasing attention across age groups due to its numerous health benefits, largely attributed to Epigallocatechin 3-gallate (EGCG), its key polyphenol. EGCG exhibits a wide spectrum of biological activities, including antioxidant, anti-inflammatory, antibacterial, anticancer, and neuroprotective properties, as well as benefits for cardiovascular and oral health. This review provides a comprehensive overview of recent findings on the therapeutic potential of EGCG in various human diseases. Neuroprotective effects of EGCG include safeguarding neurons from damage and enhancing cognitive function, primarily through its antioxidant capacity to reduce reactive oxygen species (ROS) generated during physiological stress. Additionally, EGCG modulates key signaling pathways such as JAK/STAT, Delta-Notch, and TNF, all of which play critical roles in neuronal survival, growth, and function. Furthermore, EGCG is involved in regulating apoptosis and cell cycle progression, making it a promising candidate for the treatment of metabolic diseases, including cancer and diabetes. Despite its promising therapeutic potential, further clinical trials are essential to validate the efficacy and safety of EGCG and to optimize its delivery to target tissues. While many reviews have addressed the anticancer properties of EGCG, this review focuses on the molecular mechanisms and signaling pathways by which EGCG used in specific human diseases, particularly cancer, neurodegenerative and metabolic diseases. It serves as a valuable resource for researchers, clinicians, and healthcare professionals, revealing the potential of EGCG in managing neurodegenerative disorders, cancer, and metabolic diseases and highlighting its broader therapeutic values.

表没食子儿茶素-3-没食子酸酯在人类疾病中的治疗潜力:分子机制和临床研究。
绿茶因其众多的健康益处而越来越受到各年龄组的关注,这主要归功于它的主要多酚——表没食子儿茶素3-没食子酸酯(EGCG)。EGCG具有广泛的生物活性,包括抗氧化、抗炎、抗菌、抗癌和神经保护特性,以及对心血管和口腔健康的益处。本文综述了EGCG在各种人类疾病治疗潜力方面的最新发现。EGCG的神经保护作用包括保护神经元免受损伤和增强认知功能,主要是通过其抗氧化能力来减少生理应激过程中产生的活性氧(ROS)。此外,EGCG调节关键的信号通路,如JAK/STAT、Delta-Notch和TNF,这些通路在神经元的存活、生长和功能中起着关键作用。此外,EGCG参与调节细胞凋亡和细胞周期进程,使其成为治疗代谢疾病(包括癌症和糖尿病)的有希望的候选者。尽管EGCG具有良好的治疗潜力,但仍需要进一步的临床试验来验证其有效性和安全性,并优化其向靶组织的递送。虽然许多综述已经讨论了EGCG的抗癌特性,但本文主要关注EGCG在特定人类疾病,特别是癌症,神经退行性疾病和代谢性疾病中的分子机制和信号通路。它为研究人员、临床医生和医疗保健专业人员提供了宝贵的资源,揭示了EGCG在治疗神经退行性疾病、癌症和代谢疾病方面的潜力,并突出了其更广泛的治疗价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信