Huan-Jan Lin, Tian-Hsiang Huang, Hui-Ci Huang, Pao-Li Hsiao, Wen-Hsien Ho
{"title":"Screening prediction models using artificial intelligence for moderate-to-severe obstructive sleep apnea in patients with acute ischemic stroke.","authors":"Huan-Jan Lin, Tian-Hsiang Huang, Hui-Ci Huang, Pao-Li Hsiao, Wen-Hsien Ho","doi":"10.1016/j.jstrokecerebrovasdis.2024.108214","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Obstructive sleep apnea (OSA) is common after stroke. Still, routine screening of OSA with polysomnography (PSG) is often unfeasible in clinical practice, primarily because of how limited resources are and the physical condition of patients. In this study, we used several artificial intelligence techniques to predict moderate-to-severe OSA and identify its features in patients with acute ischemic stroke.</p><p><strong>Methods: </strong>A total of 146 patients with acute ischemic stroke underwent PSG screening for OSA. Their baseline demographic characteristics, including age, sex, body mass index (BMI), Epworth Sleepiness Scale (ESS) score, and stroke risk factors, were recorded. Logistic regression analysis was conducted to identify significant features associated with moderate-to-severe OSA in patients with stroke. These significant features were used with six machine learning and ensemble learning algorithms, namely decision tree, support vector machine, random forest, extreme gradient boosting (XGBoost), adaptive boosting (AdaBoost), and gradient boosting, to compare the performance of several predictive models.</p><p><strong>Results: </strong>Multivariate logistic regression analysis revealed that age, sex, BMI, neck circumference, and ESS score were significantly associated with the presence of moderate-to-severe OSA. According to the machine learning and ensemble learning results, the XGBoost model achieved the highest performance, with an area under the receiver operating characteristic curve of 0.89 and an accuracy and F1 score of 0.80.</p><p><strong>Conclusion: </strong>This study identified key factors contributing to moderate-to-severe OSA in patients with ischemic stroke. The XGBoost model exhibited high predictive performance, indicating it has potential as a supporting tool for decision-making in health-care settings.</p>","PeriodicalId":54368,"journal":{"name":"Journal of Stroke & Cerebrovascular Diseases","volume":"34 2","pages":"108214"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stroke & Cerebrovascular Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jstrokecerebrovasdis.2024.108214","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Obstructive sleep apnea (OSA) is common after stroke. Still, routine screening of OSA with polysomnography (PSG) is often unfeasible in clinical practice, primarily because of how limited resources are and the physical condition of patients. In this study, we used several artificial intelligence techniques to predict moderate-to-severe OSA and identify its features in patients with acute ischemic stroke.
Methods: A total of 146 patients with acute ischemic stroke underwent PSG screening for OSA. Their baseline demographic characteristics, including age, sex, body mass index (BMI), Epworth Sleepiness Scale (ESS) score, and stroke risk factors, were recorded. Logistic regression analysis was conducted to identify significant features associated with moderate-to-severe OSA in patients with stroke. These significant features were used with six machine learning and ensemble learning algorithms, namely decision tree, support vector machine, random forest, extreme gradient boosting (XGBoost), adaptive boosting (AdaBoost), and gradient boosting, to compare the performance of several predictive models.
Results: Multivariate logistic regression analysis revealed that age, sex, BMI, neck circumference, and ESS score were significantly associated with the presence of moderate-to-severe OSA. According to the machine learning and ensemble learning results, the XGBoost model achieved the highest performance, with an area under the receiver operating characteristic curve of 0.89 and an accuracy and F1 score of 0.80.
Conclusion: This study identified key factors contributing to moderate-to-severe OSA in patients with ischemic stroke. The XGBoost model exhibited high predictive performance, indicating it has potential as a supporting tool for decision-making in health-care settings.
期刊介绍:
The Journal of Stroke & Cerebrovascular Diseases publishes original papers on basic and clinical science related to the fields of stroke and cerebrovascular diseases. The Journal also features review articles, controversies, methods and technical notes, selected case reports and other original articles of special nature. Its editorial mission is to focus on prevention and repair of cerebrovascular disease. Clinical papers emphasize medical and surgical aspects of stroke, clinical trials and design, epidemiology, stroke care delivery systems and outcomes, imaging sciences and rehabilitation of stroke. The Journal will be of special interest to specialists involved in caring for patients with cerebrovascular disease, including neurologists, neurosurgeons and cardiologists.