{"title":"Interobserver Variability in Manual Versus Semi-Automatic CT Assessments of Small Lung Nodule Diameter and Volume.","authors":"Frida Zacharias, Tony Martin Svahn","doi":"10.3390/tomography10120148","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aimed to assess the interobserver variability of semi-automatic diameter and volumetric measurements versus manual diameter measurements for small lung nodules identified on computed tomography scans.</p><p><strong>Methods: </strong>The radiological patient database was searched for CT thorax examinations with at least one noncalcified solid nodule (∼3-10 mm). Three radiologists with four to six years of experience evaluated each nodule in accordance with the Fleischner Society guidelines using standard diameter measurements, semi-automatic lesion diameter measurements, and volumetric assessments. Spearman's correlation coefficient measured intermeasurement agreement. We used descriptive Bland-Altman plots to visualize agreement in the measured data. Potential discrepancies were analyzed.</p><p><strong>Results: </strong>We studied a total of twenty-six nodules. Spearman's test showed that there was a much stronger relationship (<i>p</i> < 0.05) between reviewers for the semi-automatic diameter and volume measurements (avg. r = 0.97 ± 0.017 and 0.99 ± 0.005, respectively) than for the manual method (avg. r = 0.91 ± 0.017). In the Bland-Altman test, the semi-automatic diameter measure outperformed the manual method for all comparisons, while the volumetric method had better results in two out of three comparisons. The incidence of reviewers modifying the software's automatic outline varied between 62% and 92%.</p><p><strong>Conclusions: </strong>Semi-automatic techniques significantly reduced interobserver variability for small solid nodules, which has important implications for diagnostic assessments and screening. Both the semi-automatic diameter and semi-automatic volume measurements showed improvements over the manual measurement approach. Training could further diminish observer variability, given the considerable diversity in the number of adjustments among reviewers.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"10 12","pages":"2087-2099"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680079/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography10120148","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study aimed to assess the interobserver variability of semi-automatic diameter and volumetric measurements versus manual diameter measurements for small lung nodules identified on computed tomography scans.
Methods: The radiological patient database was searched for CT thorax examinations with at least one noncalcified solid nodule (∼3-10 mm). Three radiologists with four to six years of experience evaluated each nodule in accordance with the Fleischner Society guidelines using standard diameter measurements, semi-automatic lesion diameter measurements, and volumetric assessments. Spearman's correlation coefficient measured intermeasurement agreement. We used descriptive Bland-Altman plots to visualize agreement in the measured data. Potential discrepancies were analyzed.
Results: We studied a total of twenty-six nodules. Spearman's test showed that there was a much stronger relationship (p < 0.05) between reviewers for the semi-automatic diameter and volume measurements (avg. r = 0.97 ± 0.017 and 0.99 ± 0.005, respectively) than for the manual method (avg. r = 0.91 ± 0.017). In the Bland-Altman test, the semi-automatic diameter measure outperformed the manual method for all comparisons, while the volumetric method had better results in two out of three comparisons. The incidence of reviewers modifying the software's automatic outline varied between 62% and 92%.
Conclusions: Semi-automatic techniques significantly reduced interobserver variability for small solid nodules, which has important implications for diagnostic assessments and screening. Both the semi-automatic diameter and semi-automatic volume measurements showed improvements over the manual measurement approach. Training could further diminish observer variability, given the considerable diversity in the number of adjustments among reviewers.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.