Enhancing patient representation learning with inferred family pedigrees improves disease risk prediction.

IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiayuan Huang, Jatin Arora, Abdullah Mesut Erzurumluoglu, Stephen A Stanhope, Daniel Lam, Hongyu Zhao, Zhihao Ding, Zuoheng Wang, Johann de Jong
{"title":"Enhancing patient representation learning with inferred family pedigrees improves disease risk prediction.","authors":"Xiayuan Huang, Jatin Arora, Abdullah Mesut Erzurumluoglu, Stephen A Stanhope, Daniel Lam, Hongyu Zhao, Zhihao Ding, Zuoheng Wang, Johann de Jong","doi":"10.1093/jamia/ocae297","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Machine learning and deep learning are powerful tools for analyzing electronic health records (EHRs) in healthcare research. Although family health history has been recognized as a major predictor for a wide spectrum of diseases, research has so far adopted a limited view of family relations, essentially treating patients as independent samples in the analysis.</p><p><strong>Methods: </strong>To address this gap, we present ALIGATEHR, which models inferred family relations in a graph attention network augmented with an attention-based medical ontology representation, thus accounting for the complex influence of genetics, shared environmental exposures, and disease dependencies.</p><p><strong>Results: </strong>Taking disease risk prediction as a use case, we demonstrate that explicitly modeling family relations significantly improves predictions across the disease spectrum. We then show how ALIGATEHR's attention mechanism, which links patients' disease risk to their relatives' clinical profiles, successfully captures genetic aspects of diseases using longitudinal EHR diagnosis data. Finally, we use ALIGATEHR to successfully distinguish the 2 main inflammatory bowel disease subtypes with highly shared risk factors and symptoms (Crohn's disease and ulcerative colitis).</p><p><strong>Conclusion: </strong>Overall, our results highlight that family relations should not be overlooked in EHR research and illustrate ALIGATEHR's great potential for enhancing patient representation learning for predictive and interpretable modeling of EHRs.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae297","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Machine learning and deep learning are powerful tools for analyzing electronic health records (EHRs) in healthcare research. Although family health history has been recognized as a major predictor for a wide spectrum of diseases, research has so far adopted a limited view of family relations, essentially treating patients as independent samples in the analysis.

Methods: To address this gap, we present ALIGATEHR, which models inferred family relations in a graph attention network augmented with an attention-based medical ontology representation, thus accounting for the complex influence of genetics, shared environmental exposures, and disease dependencies.

Results: Taking disease risk prediction as a use case, we demonstrate that explicitly modeling family relations significantly improves predictions across the disease spectrum. We then show how ALIGATEHR's attention mechanism, which links patients' disease risk to their relatives' clinical profiles, successfully captures genetic aspects of diseases using longitudinal EHR diagnosis data. Finally, we use ALIGATEHR to successfully distinguish the 2 main inflammatory bowel disease subtypes with highly shared risk factors and symptoms (Crohn's disease and ulcerative colitis).

Conclusion: Overall, our results highlight that family relations should not be overlooked in EHR research and illustrate ALIGATEHR's great potential for enhancing patient representation learning for predictive and interpretable modeling of EHRs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the American Medical Informatics Association
Journal of the American Medical Informatics Association 医学-计算机:跨学科应用
CiteScore
14.50
自引率
7.80%
发文量
230
审稿时长
3-8 weeks
期刊介绍: JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信