A novel generative multi-task representation learning approach for predicting postoperative complications in cardiac surgery patients.

IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Junbo Shen, Bing Xue, Thomas Kannampallil, Chenyang Lu, Joanna Abraham
{"title":"A novel generative multi-task representation learning approach for predicting postoperative complications in cardiac surgery patients.","authors":"Junbo Shen, Bing Xue, Thomas Kannampallil, Chenyang Lu, Joanna Abraham","doi":"10.1093/jamia/ocae316","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Early detection of surgical complications allows for timely therapy and proactive risk mitigation. Machine learning (ML) can be leveraged to identify and predict patient risks for postoperative complications. We developed and validated the effectiveness of predicting postoperative complications using a novel surgical Variational Autoencoder (surgVAE) that uncovers intrinsic patterns via cross-task and cross-cohort presentation learning.</p><p><strong>Materials and methods: </strong>This retrospective cohort study used data from the electronic health records of adult surgical patients over 4 years (2018-2021). Six key postoperative complications for cardiac surgery were assessed: acute kidney injury, atrial fibrillation, cardiac arrest, deep vein thrombosis or pulmonary embolism, blood transfusion, and other intraoperative cardiac events. We compared surgVAE's prediction performance against widely-used ML models and advanced representation learning and generative models under 5-fold cross-validation.</p><p><strong>Results: </strong>89 246 surgeries (49% male, median [IQR] age: 57 [45-69]) were included, with 6502 in the targeted cardiac surgery cohort (61% male, median [IQR] age: 60 [53-70]). surgVAE demonstrated generally superior performance over existing ML solutions across postoperative complications of cardiac surgery patients, achieving macro-averaged AUPRC of 0.409 and macro-averaged AUROC of 0.831, which were 3.4% and 3.7% higher, respectively, than the best alternative method (by AUPRC scores). Model interpretation using Integrated Gradients highlighted key risk factors based on preoperative variable importance.</p><p><strong>Discussion and conclusion: </strong>Our advanced representation learning framework surgVAE showed excellent discriminatory performance for predicting postoperative complications and addressing the challenges of data complexity, small cohort sizes, and low-frequency positive events. surgVAE enables data-driven predictions of patient risks and prognosis while enhancing the interpretability of patient risk profiles.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae316","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Early detection of surgical complications allows for timely therapy and proactive risk mitigation. Machine learning (ML) can be leveraged to identify and predict patient risks for postoperative complications. We developed and validated the effectiveness of predicting postoperative complications using a novel surgical Variational Autoencoder (surgVAE) that uncovers intrinsic patterns via cross-task and cross-cohort presentation learning.

Materials and methods: This retrospective cohort study used data from the electronic health records of adult surgical patients over 4 years (2018-2021). Six key postoperative complications for cardiac surgery were assessed: acute kidney injury, atrial fibrillation, cardiac arrest, deep vein thrombosis or pulmonary embolism, blood transfusion, and other intraoperative cardiac events. We compared surgVAE's prediction performance against widely-used ML models and advanced representation learning and generative models under 5-fold cross-validation.

Results: 89 246 surgeries (49% male, median [IQR] age: 57 [45-69]) were included, with 6502 in the targeted cardiac surgery cohort (61% male, median [IQR] age: 60 [53-70]). surgVAE demonstrated generally superior performance over existing ML solutions across postoperative complications of cardiac surgery patients, achieving macro-averaged AUPRC of 0.409 and macro-averaged AUROC of 0.831, which were 3.4% and 3.7% higher, respectively, than the best alternative method (by AUPRC scores). Model interpretation using Integrated Gradients highlighted key risk factors based on preoperative variable importance.

Discussion and conclusion: Our advanced representation learning framework surgVAE showed excellent discriminatory performance for predicting postoperative complications and addressing the challenges of data complexity, small cohort sizes, and low-frequency positive events. surgVAE enables data-driven predictions of patient risks and prognosis while enhancing the interpretability of patient risk profiles.

一种预测心脏手术患者术后并发症的新生成多任务表征学习方法。
目的:早期发现手术并发症可以及时治疗和主动降低风险。机器学习(ML)可以用来识别和预测患者术后并发症的风险。我们开发并验证了使用新型手术变分自编码器(surgVAE)预测术后并发症的有效性,该编码器通过跨任务和跨队列演示学习揭示了内在模式。材料和方法:本回顾性队列研究使用了成人外科患者4年(2018-2021)的电子健康记录数据。评估心脏手术的六个关键术后并发症:急性肾损伤、心房颤动、心脏骤停、深静脉血栓形成或肺栓塞、输血和其他术中心脏事件。在5倍交叉验证下,我们将surgVAE的预测性能与广泛使用的ML模型、高级表示学习和生成模型进行了比较。结果:纳入89 246例手术(男性49%,中位[IQR]年龄:57岁[45-69]),目标心脏手术队列6502例(男性61%,中位[IQR]年龄:60岁[53-70])。在心脏手术患者术后并发症方面,surgVAE总体上优于现有ML解决方案,宏观平均AUPRC为0.409,宏观平均AUROC为0.831,分别比最佳替代方法(AUPRC评分)高3.4%和3.7%。使用综合梯度的模型解释突出了基于术前变量重要性的关键风险因素。讨论和结论:我们的先进表征学习框架surgVAE在预测术后并发症和解决数据复杂性、小队列规模和低频积极事件的挑战方面表现出出色的歧视性表现。surgVAE能够对患者风险和预后进行数据驱动的预测,同时增强患者风险概况的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the American Medical Informatics Association
Journal of the American Medical Informatics Association 医学-计算机:跨学科应用
CiteScore
14.50
自引率
7.80%
发文量
230
审稿时长
3-8 weeks
期刊介绍: JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信