SPP1+ macrophages promote head and neck squamous cell carcinoma progression by secreting TNF-α and IL-1β.

IF 11.4 1区 医学 Q1 ONCOLOGY
Chun Liu, Kun Wu, Chuwen Li, Zhen Zhang, Peisong Zhai, Haiyan Guo, Jianjun Zhang
{"title":"SPP1+ macrophages promote head and neck squamous cell carcinoma progression by secreting TNF-α and IL-1β.","authors":"Chun Liu, Kun Wu, Chuwen Li, Zhen Zhang, Peisong Zhai, Haiyan Guo, Jianjun Zhang","doi":"10.1186/s13046-024-03255-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Head and neck squamous cell carcinoma (HNSCC) is a very aggressive disease characterized by a heterogeneous tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs) constitute the major innate immune population in the TIME where they facilitate crucial regulatory processes that participate in malignant tumor progression. SPP1 + macrophages (SPP1 + Macs) are found in many cancers, but their effects on HNSCC remain unknown. This study aimed to identify and validate the role and function of SPP1 + Macs in the malignant progression of HNSCC.</p><p><strong>Methods: </strong>In this study, we applied single-cell RNA sequencing (scRNA-seq) analyses of paired tumor and normal tissues from 5 HNSCC patients to identify tumor-specific SPP1 + Macs. RT-qPCR and multiplex immunohistochemical and multiplex immunofluorescence staining were used to verify the presence of SPP1 + Macs in the clinical samples. Gene set variation analysis suggested that SPP1 + Macs were actively involved in cytokine production. Thus, we constructed SPP1-OE macrophages and SPP1-KD macrophages (both differentiated from THP-1 cells), performed a Luminex liquid suspension chip detection assay to detect differential cytokines, and further assessed their biological functions and mechanisms in several HNSCC cell lines and adjacent macrophages. An in vivo experiment was used to verify the function of SPP1 + Macs in HNSCC progression.</p><p><strong>Results: </strong>The scRNA-seq results revealed that myeloid cells were heterogeneous and strongly correlated with tumor cells in the TIME in HNSCC and identified tumor-specific SPP1 + Macs, which were positively correlated with poor prognosis of HNSCC patients. Gene set variation analysis (GSVA) suggested that SPP1 + Macs were actively involved in cytokine production. Luminex liquid suspension chip detection assay indicated that SPP1 + Mac-derived TNF-α and IL-1β played important roles. Both in vitro and in vivo experiments and the use of VGX-1027, an inhibitor of macrophage-derived TNF-α and IL-1β, confirmed that SPP1 + Mac-derived TNF-α and IL-1β promoted HNSCC progression by supporting tumor cell proliferation and migration. Mechanistically, we found that TNF-α and IL-1β were upregulated due to NF-kappa B signaling pathway activation in SPP1 + Macs. Moreover, SPP1 + Mac-derived TNF-α and IL-1β promoted the expression of OPN in both tumor cells and other adjacent macrophages through different signaling pathways.</p><p><strong>Conclusions: </strong>SPP1 + Macs increase the secretion of TNF-α and IL-1β via the NF-kappa B pathway to promote HNSCC cell proliferation, and TNF-α and IL-1β in turn upregulate the expression of OPN in tumor cells and macrophages; thus, SPP1 + Macs may be a candidate target through which antitumor efficacy can be enhanced.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"43 1","pages":"332"},"PeriodicalIF":11.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670405/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-024-03255-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Head and neck squamous cell carcinoma (HNSCC) is a very aggressive disease characterized by a heterogeneous tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs) constitute the major innate immune population in the TIME where they facilitate crucial regulatory processes that participate in malignant tumor progression. SPP1 + macrophages (SPP1 + Macs) are found in many cancers, but their effects on HNSCC remain unknown. This study aimed to identify and validate the role and function of SPP1 + Macs in the malignant progression of HNSCC.

Methods: In this study, we applied single-cell RNA sequencing (scRNA-seq) analyses of paired tumor and normal tissues from 5 HNSCC patients to identify tumor-specific SPP1 + Macs. RT-qPCR and multiplex immunohistochemical and multiplex immunofluorescence staining were used to verify the presence of SPP1 + Macs in the clinical samples. Gene set variation analysis suggested that SPP1 + Macs were actively involved in cytokine production. Thus, we constructed SPP1-OE macrophages and SPP1-KD macrophages (both differentiated from THP-1 cells), performed a Luminex liquid suspension chip detection assay to detect differential cytokines, and further assessed their biological functions and mechanisms in several HNSCC cell lines and adjacent macrophages. An in vivo experiment was used to verify the function of SPP1 + Macs in HNSCC progression.

Results: The scRNA-seq results revealed that myeloid cells were heterogeneous and strongly correlated with tumor cells in the TIME in HNSCC and identified tumor-specific SPP1 + Macs, which were positively correlated with poor prognosis of HNSCC patients. Gene set variation analysis (GSVA) suggested that SPP1 + Macs were actively involved in cytokine production. Luminex liquid suspension chip detection assay indicated that SPP1 + Mac-derived TNF-α and IL-1β played important roles. Both in vitro and in vivo experiments and the use of VGX-1027, an inhibitor of macrophage-derived TNF-α and IL-1β, confirmed that SPP1 + Mac-derived TNF-α and IL-1β promoted HNSCC progression by supporting tumor cell proliferation and migration. Mechanistically, we found that TNF-α and IL-1β were upregulated due to NF-kappa B signaling pathway activation in SPP1 + Macs. Moreover, SPP1 + Mac-derived TNF-α and IL-1β promoted the expression of OPN in both tumor cells and other adjacent macrophages through different signaling pathways.

Conclusions: SPP1 + Macs increase the secretion of TNF-α and IL-1β via the NF-kappa B pathway to promote HNSCC cell proliferation, and TNF-α and IL-1β in turn upregulate the expression of OPN in tumor cells and macrophages; thus, SPP1 + Macs may be a candidate target through which antitumor efficacy can be enhanced.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.20
自引率
1.80%
发文量
333
审稿时长
1 months
期刊介绍: The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications. We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options. We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us. We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community. By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.
文献相关原料
公司名称
产品信息
索莱宝
crystal violet
索莱宝
Triton X-100
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信