HuiPing Liao, QingLan Ma, Lei Chen, Wei Guo, KaiYan Feng, YuSheng Bao, Yu Zhang, WenFeng Shen, Tao Huang, Yu-Dong Cai
{"title":"Machine learning analysis of CD4+ T cell gene expression in diverse diseases: insights from cancer, metabolic, respiratory, and digestive disorders.","authors":"HuiPing Liao, QingLan Ma, Lei Chen, Wei Guo, KaiYan Feng, YuSheng Bao, Yu Zhang, WenFeng Shen, Tao Huang, Yu-Dong Cai","doi":"10.1016/j.cancergen.2024.12.004","DOIUrl":null,"url":null,"abstract":"<p><p>CD4<sup>+</sup> T cells play a pivotal role in the immune system, particularly in adaptive immunity, by orchestrating and enhancing immune responses. CD4<sup>+</sup> T cell-related immune responses exhibit diverse characteristics in different diseases. This study utilizes gene expression analysis of CD4<sup>+</sup> T cells to classify and understand complex diseases. We analyzed the dataset consisting of samples from various diseases, including cancers, metabolic disorders, circulatory and respiratory diseases, and digestive ailments, as well as 53 healthy controls. Each sample contained expression data for 22,881 genes. Four feature ranking algorithms, incremental feature selection method, synthetic minority oversampling technique, and four classification algorithms were utilized to pinpoint essential genes, extract classification rules and build efficient classifiers. The following analysis focused on genes across rules, such as AK4, CALU, LINC01271, and RUSC1-AS1. AK4 and CALU show fluctuating levels in diseases like asthma, Crohn's disease, and breast cancer. The analysis results and existing research suggest that they may play a role in these diseases. LINC01271 generally has higher expression in conditions including asthma, Crohn's disease, and diabetes. RUSC1-AS1 is more expressed in chronic diseases like asthma and Crohn's, but less in acute illnesses like tonsillitis and influenza. This highlights the distinct roles of these genes in different diseases. Our approach highlights the potential for developing novel therapeutic strategies based on the transcriptional profiles of CD4<sup>+</sup> T cells.</p>","PeriodicalId":49225,"journal":{"name":"Cancer Genetics","volume":"290-291 ","pages":"56-60"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.cancergen.2024.12.004","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/22 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
CD4+ T cells play a pivotal role in the immune system, particularly in adaptive immunity, by orchestrating and enhancing immune responses. CD4+ T cell-related immune responses exhibit diverse characteristics in different diseases. This study utilizes gene expression analysis of CD4+ T cells to classify and understand complex diseases. We analyzed the dataset consisting of samples from various diseases, including cancers, metabolic disorders, circulatory and respiratory diseases, and digestive ailments, as well as 53 healthy controls. Each sample contained expression data for 22,881 genes. Four feature ranking algorithms, incremental feature selection method, synthetic minority oversampling technique, and four classification algorithms were utilized to pinpoint essential genes, extract classification rules and build efficient classifiers. The following analysis focused on genes across rules, such as AK4, CALU, LINC01271, and RUSC1-AS1. AK4 and CALU show fluctuating levels in diseases like asthma, Crohn's disease, and breast cancer. The analysis results and existing research suggest that they may play a role in these diseases. LINC01271 generally has higher expression in conditions including asthma, Crohn's disease, and diabetes. RUSC1-AS1 is more expressed in chronic diseases like asthma and Crohn's, but less in acute illnesses like tonsillitis and influenza. This highlights the distinct roles of these genes in different diseases. Our approach highlights the potential for developing novel therapeutic strategies based on the transcriptional profiles of CD4+ T cells.
期刊介绍:
The aim of Cancer Genetics is to publish high quality scientific papers on the cellular, genetic and molecular aspects of cancer, including cancer predisposition and clinical diagnostic applications. Specific areas of interest include descriptions of new chromosomal, molecular or epigenetic alterations in benign and malignant diseases; novel laboratory approaches for identification and characterization of chromosomal rearrangements or genomic alterations in cancer cells; correlation of genetic changes with pathology and clinical presentation; and the molecular genetics of cancer predisposition. To reach a basic science and clinical multidisciplinary audience, we welcome original full-length articles, reviews, meeting summaries, brief reports, and letters to the editor.