Xumin Zhou , Shilong Cheng , Zhongjie Chen , Jinming Zhang , Jiaqi Wang , Qiang Li , Xumin Zhou
{"title":"Inhibiting HnRNP L-mediated alternative splicing of EIF4G1 counteracts immune checkpoint blockade resistance in Castration-resistant prostate Cancer","authors":"Xumin Zhou , Shilong Cheng , Zhongjie Chen , Jinming Zhang , Jiaqi Wang , Qiang Li , Xumin Zhou","doi":"10.1016/j.neo.2024.101109","DOIUrl":null,"url":null,"abstract":"<div><div>Immunotherapy with checkpoint inhibitors produced significant clinical responses in a subset of cancer patients who were resistant to prior therapies. However, Castration-resistant prostate cancer (CRPC) is seriously lack of T cell infiltration, which greatly limits the clinical application of immunotherapy, but the mechanism is unclear. In the present study, in silico analyses and experimental data show that HnRNP L was significantly negatively correlated with CD4+ and CD8+ <em>T</em> cells infiltration in patients; besides, we found deficiency of HnRNP L recruites CD4+ and CD8+ <em>T</em> cells infiltration and impairs tumorigenesis. Mechanically, HnRNP L enhanced the translation of c-Myc and then promoted CXCL8 secretion via alternative splicing of EIF4G1. In vivo, inhibition of EIF4G1 by the inhibitor, SBI-0640756, attenuated HnRNP <span>l</span>-induced tumor progression and immunosuppressive activity. And most of all, therapeutic synergy between HnRNP L knockdown and Anti-PD-1 could significantly suppress xenograft prostate cancer growth. In summary, this study revealled the molecular mechanism of HnRNP L regulating the immune infiltration, which provides a new theoretical basis for overcoming the limitation of immunotherapy for CRPC.</div></div>","PeriodicalId":18917,"journal":{"name":"Neoplasia","volume":"60 ","pages":"Article 101109"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731738/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476558624001507","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Immunotherapy with checkpoint inhibitors produced significant clinical responses in a subset of cancer patients who were resistant to prior therapies. However, Castration-resistant prostate cancer (CRPC) is seriously lack of T cell infiltration, which greatly limits the clinical application of immunotherapy, but the mechanism is unclear. In the present study, in silico analyses and experimental data show that HnRNP L was significantly negatively correlated with CD4+ and CD8+ T cells infiltration in patients; besides, we found deficiency of HnRNP L recruites CD4+ and CD8+ T cells infiltration and impairs tumorigenesis. Mechanically, HnRNP L enhanced the translation of c-Myc and then promoted CXCL8 secretion via alternative splicing of EIF4G1. In vivo, inhibition of EIF4G1 by the inhibitor, SBI-0640756, attenuated HnRNP l-induced tumor progression and immunosuppressive activity. And most of all, therapeutic synergy between HnRNP L knockdown and Anti-PD-1 could significantly suppress xenograft prostate cancer growth. In summary, this study revealled the molecular mechanism of HnRNP L regulating the immune infiltration, which provides a new theoretical basis for overcoming the limitation of immunotherapy for CRPC.
期刊介绍:
Neoplasia publishes the results of novel investigations in all areas of oncology research. The title Neoplasia was chosen to convey the journal’s breadth, which encompasses the traditional disciplines of cancer research as well as emerging fields and interdisciplinary investigations. Neoplasia is interested in studies describing new molecular and genetic findings relating to the neoplastic phenotype and in laboratory and clinical studies demonstrating creative applications of advances in the basic sciences to risk assessment, prognostic indications, detection, diagnosis, and treatment. In addition to regular Research Reports, Neoplasia also publishes Reviews and Meeting Reports. Neoplasia is committed to ensuring a thorough, fair, and rapid review and publication schedule to further its mission of serving both the scientific and clinical communities by disseminating important data and ideas in cancer research.