The SpxA1-TenA toxin-antitoxin system regulates epigenetic variations of Streptococcus pneumoniae by targeting protein synthesis.

IF 5.5 1区 医学 Q1 MICROBIOLOGY
Shaomeng Wang, Xiu-Yuan Li, Mengran Zhu, Haiteng Deng, Juanjuan Wang, Jing-Ren Zhang
{"title":"The SpxA1-TenA toxin-antitoxin system regulates epigenetic variations of Streptococcus pneumoniae by targeting protein synthesis.","authors":"Shaomeng Wang, Xiu-Yuan Li, Mengran Zhu, Haiteng Deng, Juanjuan Wang, Jing-Ren Zhang","doi":"10.1371/journal.ppat.1012801","DOIUrl":null,"url":null,"abstract":"<p><p>Human pathogen Streptococcus pneumoniae forms multiple epigenetically and phenotypically distinct intra-populations by invertase PsrA-driven inversions of DNA methyltransferase hsdS genes in the colony opacity-determinant (cod) locus. As manifested by phase switch between opaque and transparent colonies, different genome methylation patterns or epigenomes confer pathogenesis-associated traits, but it is unknown how the pathogen controls the hsdS inversion orientations. Here, we report our finding of the SpxA1-TenA toxin-antitoxin (TA) system that regulates the orientations of hsdS inversions, and thereby bacterial epigenome and associated traits (e.g., colony opacity) by targeting pneumococcal protein synthesis. SpxA1 and TenA were found to constitute a highly conserved type II TA system in S. pneumoniae, primarily based on the observation that overexpressing toxin TenA led to growth arrest in E. coli and enhanced autolysis in S. pneumoniae, and the antitoxin SpxA1 repressed the transcription of the spxA1-tenA operon. When the transcription of tenA was de-repressed by a spontaneous AT di-nucleotide insertion/deletion in the promoter region of the spxA1-tenA operon, TenA bound to the ribosome maturation factor RimM, and thereby reduced the cellular level of alternative sigma factor ComX (known for the activation of natural transformation-associated genes). Attenuation of ComX expression in turn enhanced the transcription of the invertase gene psrA, which favored the formation of the transparent colony phase-associated hsdS allelic configurations in the cod locus. Phenotypically, moderate expression of TenA dramatically reshaped pneumococcal epigenome and colony opacity. Because spontaneous variations frequently occur during bacterial growth in the number of the AT di-nucleotides in the promoter region of the spxA1-tenA operon, this locus acts as a programmed genetic switch that generates pneumococcal subpopulations with epigenetic and phenotypic diversity.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"20 12","pages":"e1012801"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012801","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human pathogen Streptococcus pneumoniae forms multiple epigenetically and phenotypically distinct intra-populations by invertase PsrA-driven inversions of DNA methyltransferase hsdS genes in the colony opacity-determinant (cod) locus. As manifested by phase switch between opaque and transparent colonies, different genome methylation patterns or epigenomes confer pathogenesis-associated traits, but it is unknown how the pathogen controls the hsdS inversion orientations. Here, we report our finding of the SpxA1-TenA toxin-antitoxin (TA) system that regulates the orientations of hsdS inversions, and thereby bacterial epigenome and associated traits (e.g., colony opacity) by targeting pneumococcal protein synthesis. SpxA1 and TenA were found to constitute a highly conserved type II TA system in S. pneumoniae, primarily based on the observation that overexpressing toxin TenA led to growth arrest in E. coli and enhanced autolysis in S. pneumoniae, and the antitoxin SpxA1 repressed the transcription of the spxA1-tenA operon. When the transcription of tenA was de-repressed by a spontaneous AT di-nucleotide insertion/deletion in the promoter region of the spxA1-tenA operon, TenA bound to the ribosome maturation factor RimM, and thereby reduced the cellular level of alternative sigma factor ComX (known for the activation of natural transformation-associated genes). Attenuation of ComX expression in turn enhanced the transcription of the invertase gene psrA, which favored the formation of the transparent colony phase-associated hsdS allelic configurations in the cod locus. Phenotypically, moderate expression of TenA dramatically reshaped pneumococcal epigenome and colony opacity. Because spontaneous variations frequently occur during bacterial growth in the number of the AT di-nucleotides in the promoter region of the spxA1-tenA operon, this locus acts as a programmed genetic switch that generates pneumococcal subpopulations with epigenetic and phenotypic diversity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Pathogens
PLoS Pathogens MICROBIOLOGY-PARASITOLOGY
自引率
3.00%
发文量
598
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信