Enhanced YOLOv8 Ship Detection Empower Unmanned Surface Vehicles for Advanced Maritime Surveillance.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Abdelilah Haijoub, Anas Hatim, Antonio Guerrero-Gonzalez, Mounir Arioua, Khalid Chougdali
{"title":"Enhanced YOLOv8 Ship Detection Empower Unmanned Surface Vehicles for Advanced Maritime Surveillance.","authors":"Abdelilah Haijoub, Anas Hatim, Antonio Guerrero-Gonzalez, Mounir Arioua, Khalid Chougdali","doi":"10.3390/jimaging10120303","DOIUrl":null,"url":null,"abstract":"<p><p>The evolution of maritime surveillance is significantly marked by the incorporation of Artificial Intelligence and machine learning into Unmanned Surface Vehicles (USVs). This paper presents an AI approach for detecting and tracking unmanned surface vehicles, specifically leveraging an enhanced version of YOLOv8, fine-tuned for maritime surveillance needs. Deployed on the NVIDIA Jetson TX2 platform, the system features an innovative architecture and perception module optimized for real-time operations and energy efficiency. Demonstrating superior detection accuracy with a mean Average Precision (mAP) of 0.99 and achieving an operational speed of 17.99 FPS, all while maintaining energy consumption at just 5.61 joules. The remarkable balance between accuracy, processing speed, and energy efficiency underscores the potential of this system to significantly advance maritime safety, security, and environmental monitoring.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"10 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676501/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging10120303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The evolution of maritime surveillance is significantly marked by the incorporation of Artificial Intelligence and machine learning into Unmanned Surface Vehicles (USVs). This paper presents an AI approach for detecting and tracking unmanned surface vehicles, specifically leveraging an enhanced version of YOLOv8, fine-tuned for maritime surveillance needs. Deployed on the NVIDIA Jetson TX2 platform, the system features an innovative architecture and perception module optimized for real-time operations and energy efficiency. Demonstrating superior detection accuracy with a mean Average Precision (mAP) of 0.99 and achieving an operational speed of 17.99 FPS, all while maintaining energy consumption at just 5.61 joules. The remarkable balance between accuracy, processing speed, and energy efficiency underscores the potential of this system to significantly advance maritime safety, security, and environmental monitoring.

增强的YOLOv8船舶探测使无人水面车辆能够进行先进的海上监视。
将人工智能和机器学习纳入无人水面车辆(usv)是海上监视发展的显著标志。本文提出了一种用于探测和跟踪无人水面车辆的人工智能方法,特别是利用增强版的YOLOv8,对海上监视需求进行了微调。该系统部署在NVIDIA Jetson TX2平台上,具有创新的架构和感知模块,针对实时操作和能源效率进行了优化。显示卓越的检测精度,平均平均精度(mAP)为0.99,实现17.99 FPS的操作速度,同时保持能量消耗仅为5.61焦耳。精确度、处理速度和能源效率之间的显著平衡强调了该系统在显著提高海上安全、安保和环境监测方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信