A Regularization Method for Landslide Thickness Estimation.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Lisa Borgatti, Davide Donati, Liwei Hu, Germana Landi, Fabiana Zama
{"title":"A Regularization Method for Landslide Thickness Estimation.","authors":"Lisa Borgatti, Davide Donati, Liwei Hu, Germana Landi, Fabiana Zama","doi":"10.3390/jimaging10120314","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate estimation of landslide depth is essential for practical hazard assessment and risk mitigation. This work addresses the problem of determining landslide depth from satellite-derived elevation data. Using the principle of mass conservation, this problem can be formulated as a linear inverse problem. To solve the inverse problem, we present a regularization approach that computes approximate solutions and regularization parameters using the Balancing Principle. Synthetic data were carefully designed and generated to evaluate the method under controlled conditions, allowing for precise validation of its performance. Through comprehensive testing with this synthetic dataset, we demonstrate the method's robustness across varying noise levels. When applied to real-world data from the Fels landslide in Alaska, the proposed method proved its practical value in reconstructing landslide thickness patterns. These reconstructions showed good agreement with existing geological interpretations, validating the method's effectiveness in real-world scenarios.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"10 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678178/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging10120314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate estimation of landslide depth is essential for practical hazard assessment and risk mitigation. This work addresses the problem of determining landslide depth from satellite-derived elevation data. Using the principle of mass conservation, this problem can be formulated as a linear inverse problem. To solve the inverse problem, we present a regularization approach that computes approximate solutions and regularization parameters using the Balancing Principle. Synthetic data were carefully designed and generated to evaluate the method under controlled conditions, allowing for precise validation of its performance. Through comprehensive testing with this synthetic dataset, we demonstrate the method's robustness across varying noise levels. When applied to real-world data from the Fels landslide in Alaska, the proposed method proved its practical value in reconstructing landslide thickness patterns. These reconstructions showed good agreement with existing geological interpretations, validating the method's effectiveness in real-world scenarios.

滑坡厚度估计的正则化方法。
准确估计滑坡深度对实际危害评估和风险缓解至关重要。这项工作解决了从卫星获得的高程数据确定滑坡深度的问题。利用质量守恒原理,这个问题可以表述为一个线性逆问题。为了解决反问题,我们提出了一种正则化方法,该方法使用平衡原理计算近似解和正则化参数。精心设计和生成合成数据,以便在受控条件下评估该方法,从而精确验证其性能。通过对该合成数据集的综合测试,我们证明了该方法在不同噪声水平下的鲁棒性。将该方法应用于阿拉斯加州费尔斯滑坡的实际数据,验证了该方法在滑坡厚度模式重建中的实用价值。这些重建结果与现有的地质解释结果吻合良好,验证了该方法在实际场景中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信