Andrés Munguía-Siu, Irene Vergara, Juan Horacio Espinoza-Rodríguez
{"title":"The Use of Hybrid CNN-RNN Deep Learning Models to Discriminate Tumor Tissue in Dynamic Breast Thermography.","authors":"Andrés Munguía-Siu, Irene Vergara, Juan Horacio Espinoza-Rodríguez","doi":"10.3390/jimaging10120329","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is one of the leading causes of death for women worldwide, and early detection can help reduce the death rate. Infrared thermography has gained popularity as a non-invasive and rapid method for detecting this pathology and can be further enhanced by applying neural networks to extract spatial and even temporal data derived from breast thermographic images if they are acquired sequentially. In this study, we evaluated hybrid convolutional-recurrent neural network (CNN-RNN) models based on five state-of-the-art pre-trained CNN architectures coupled with three RNNs to discern tumor abnormalities in dynamic breast thermographic images. The hybrid architecture that achieved the best performance for detecting breast cancer was VGG16-LSTM, which showed accuracy (ACC), sensitivity (SENS), and specificity (SPEC) of 95.72%, 92.76%, and 98.68%, respectively, with a CPU runtime of 3.9 s. However, the hybrid architecture that showed the fastest CPU runtime was AlexNet-RNN with 0.61 s, although with lower performance (ACC: 80.59%, SENS: 68.52%, SPEC: 92.76%), but still superior to AlexNet (ACC: 69.41%, SENS: 52.63%, SPEC: 86.18%) with 0.44 s. Our findings show that hybrid CNN-RNN models outperform stand-alone CNN models, indicating that temporal data recovery from dynamic breast thermographs is possible without significantly compromising classifier runtime.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"10 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728322/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging10120329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer is one of the leading causes of death for women worldwide, and early detection can help reduce the death rate. Infrared thermography has gained popularity as a non-invasive and rapid method for detecting this pathology and can be further enhanced by applying neural networks to extract spatial and even temporal data derived from breast thermographic images if they are acquired sequentially. In this study, we evaluated hybrid convolutional-recurrent neural network (CNN-RNN) models based on five state-of-the-art pre-trained CNN architectures coupled with three RNNs to discern tumor abnormalities in dynamic breast thermographic images. The hybrid architecture that achieved the best performance for detecting breast cancer was VGG16-LSTM, which showed accuracy (ACC), sensitivity (SENS), and specificity (SPEC) of 95.72%, 92.76%, and 98.68%, respectively, with a CPU runtime of 3.9 s. However, the hybrid architecture that showed the fastest CPU runtime was AlexNet-RNN with 0.61 s, although with lower performance (ACC: 80.59%, SENS: 68.52%, SPEC: 92.76%), but still superior to AlexNet (ACC: 69.41%, SENS: 52.63%, SPEC: 86.18%) with 0.44 s. Our findings show that hybrid CNN-RNN models outperform stand-alone CNN models, indicating that temporal data recovery from dynamic breast thermographs is possible without significantly compromising classifier runtime.