Nicolai Bjødstrup Palstrøm, Kristian Boje Nielsen, Amanda Jessica Campbell, Mette Soerensen, Lars Melholt Rasmussen, Jes Sanddal Lindholt, Hans Christian Beck
{"title":"Affinity-Enriched Plasma Proteomics for Biomarker Discovery in Abdominal Aortic Aneurysms.","authors":"Nicolai Bjødstrup Palstrøm, Kristian Boje Nielsen, Amanda Jessica Campbell, Mette Soerensen, Lars Melholt Rasmussen, Jes Sanddal Lindholt, Hans Christian Beck","doi":"10.3390/proteomes12040037","DOIUrl":null,"url":null,"abstract":"<p><p>Abdominal aortic aneurysm (AAA) is a life-threatening condition characterized by the weakening and dilation of the abdominal aorta. Few diagnostic biomarkers have been proposed for this condition. We performed mass spectrometry-based proteomics analysis of affinity-enriched plasma from 45 patients with AAA and 45 matched controls to identify changes to the plasma proteome and potential diagnostic biomarkers. Gene ontology analysis revealed a significant upregulation of the proteins involved in inflammation, coagulation, and extracellular matrix in AAA patients, while proteins related to angiogenesis were among those downregulated. Using recursive feature elimination, we identified a subset of 10 significantly regulated proteins that were highly predictive of AAA. A random forest classifier trained on these proteins achieved an area under the curve (AUC) of 0.93 [95% CI: 0.91-0.95] using cross-validation. Further validation in a larger cohort is necessary to confirm these results.</p>","PeriodicalId":20877,"journal":{"name":"Proteomes","volume":"12 4","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/proteomes12040037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening condition characterized by the weakening and dilation of the abdominal aorta. Few diagnostic biomarkers have been proposed for this condition. We performed mass spectrometry-based proteomics analysis of affinity-enriched plasma from 45 patients with AAA and 45 matched controls to identify changes to the plasma proteome and potential diagnostic biomarkers. Gene ontology analysis revealed a significant upregulation of the proteins involved in inflammation, coagulation, and extracellular matrix in AAA patients, while proteins related to angiogenesis were among those downregulated. Using recursive feature elimination, we identified a subset of 10 significantly regulated proteins that were highly predictive of AAA. A random forest classifier trained on these proteins achieved an area under the curve (AUC) of 0.93 [95% CI: 0.91-0.95] using cross-validation. Further validation in a larger cohort is necessary to confirm these results.
ProteomesBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.50
自引率
3.00%
发文量
37
审稿时长
11 weeks
期刊介绍:
Proteomes (ISSN 2227-7382) is an open access, peer reviewed journal on all aspects of proteome science. Proteomes covers the multi-disciplinary topics of structural and functional biology, protein chemistry, cell biology, methodology used for protein analysis, including mass spectrometry, protein arrays, bioinformatics, HTS assays, etc. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers. Scope: -whole proteome analysis of any organism -disease/pharmaceutical studies -comparative proteomics -protein-ligand/protein interactions -structure/functional proteomics -gene expression -methodology -bioinformatics -applications of proteomics