Quantum features of the transport through ion channels in the soft knock-on model.

IF 2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mateusz Polakowski, Miłosz Panfil
{"title":"Quantum features of the transport through ion channels in the soft knock-on model.","authors":"Mateusz Polakowski, Miłosz Panfil","doi":"10.1088/1478-3975/ad9cde","DOIUrl":null,"url":null,"abstract":"<p><p>Ion channels are protein structures that facilitate the selective passage of ions across the membrane cells of living organisms. They are known for their high conductance and high selectivity. The precise mechanism between these two seemingly contradicting features is not yet firmly established. One possible candidate is the quantum coherence. In this work we study the quantum model of the soft knock-on conduction using the Lindblad equation taking into account the non-hermiticity of the model. We show that the model exhibits a regime in which high conductance coexists with high coherence. Our findings second the role of quantum effects in the transport properties of the ion channels.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":"22 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/ad9cde","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ion channels are protein structures that facilitate the selective passage of ions across the membrane cells of living organisms. They are known for their high conductance and high selectivity. The precise mechanism between these two seemingly contradicting features is not yet firmly established. One possible candidate is the quantum coherence. In this work we study the quantum model of the soft knock-on conduction using the Lindblad equation taking into account the non-hermiticity of the model. We show that the model exhibits a regime in which high conductance coexists with high coherence. Our findings second the role of quantum effects in the transport properties of the ion channels.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical biology
Physical biology 生物-生物物理
CiteScore
4.20
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity. Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as: molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division systems biology, e.g. signaling, gene regulation and metabolic networks cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis cell-cell interactions, cell aggregates, organoids, tissues and organs developmental dynamics, including pattern formation and morphogenesis physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation neuronal systems, including information processing by networks, memory and learning population dynamics, ecology, and evolution collective action and emergence of collective phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信